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Best Arm Identification - The General Setting

« The learner and the environment interact sequentially over some number of rounds.
The number of rounds is not fixed in advance.

« In each round ¢t = 1, 2, ... the learner chooses an action A, from a fixed finite set,
which is fed to the environment.

 The environment then samples a reward R, from some distribution which depends on

A,

« The goal of the learner is to identify, with high probability, an action close enough to
the optimal action, in as few rounds of interaction as possible.
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Best Arm Identification - The Linear Bandit Setting

« The actions (also called arms) are denoted with the set [K].
o Each arm i € [K] has an associated known feature vector 2, € R?, for some d > 1.
 The rewards are modeled as

Ry = xle* T Mt

where §* € R is an unknown parameter and 7, is noise.

« Denote
G = o(Ay, Ry, “'7At—27Rt—27At—1>

the o-algebra summarizing the information available just before the reward R, is
observed.
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Best Arm Identification - The Linear Bandit Setting

« We assume that the noise is conditionally R-sub-Gaussian, i.e.,

A2 R?
Elexp(An,) | %] < exp( = )

« Note that this implies E[n, | %] = 0 and thus E[R, | #] = xl@*.

* Denote a* = argmax; ¢k z, 0*.

« Goal: Design an algorithm that given ¢, € (0, 1) outputs an arm a such that
P{zl.0* —x)0* >e} <6

in as few rounds of interaction as possible.
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Comparison with Multi Armed Bandits

- Linear bandits setting generalizes the multi-armed bandits setting.

. To see this, let z;, = e, be the i*® standard basis vector in R,
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Static vs Adaptive Algorithms

« In static algorithms the learner chooses the action sequence A, A,, ... before
observing the rewards, and then estimates the best action in an “offline” manner.

- In adaptive algorithms the learner chooses each action A, as a function of the past
observations. This creates probabilistic dependencies in the stochastic process
Ay, Ry, Ay, R, ..., making the analysis challenging, as we will se.
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A General Strategy: Constructing Confidence Sets
. At time t we have observed the history H, = (A, Ry, ..., A, {, R, 1).

« Using H, we estimate two quantities:
» an estimator ét of the unknown parameter 6*, and
» a confidence ellipsoid C; such that it contains 6* with high probability.

« We want to choose actions in a manner that shrinks the confidence ellipsoids as
quickly as possible.
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Interlude: Least Squares Regression
+ Suppose you observe iid. data (z1,y,), .., (Z,,,y,) € (R%R).

« You assume that there exists w* € R such that Xw* ~ y, where X is the n x d

matrix containing z; in its i

row and y is the column vector containing y,’s.
o In /?-regularized regression (also called ridge regression) we find

wgg = arg min | Xw — y[5 + Aw]3.
weR?

« It can be shown that

+ Note that X' X = " =z,
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A Static Algorithm: Estimating 0

- A similar strategy as above can be applied to linear bandits.

« If the actions are chosen in a static manner, then the data (x A, Rl), ey (x A, Rn)
becomes i.i.d.
o Define
n n
zp :ZxAixl—l—)\I, b, = T4 R;.
=) 1=1

- Our estimate 6, of #* then becomes
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A Static Algorithm: Estimating Confidence Ellipsoids
 To get a confidence ellipsoid we use Azuma-Hoeflding’s inequality.
« Using union bound over all possible x € {z, ..., T }, it suffices to upper bound

’a:T (én — (9*) :

« This can be written as
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A Static Algorithm: Estimating Confidence Ellipsoids

« If we now define

t
Zy = xT(Eo{Z)_l (Z xAﬂh) :
i=1

then the sequence (Zt)t> , becomes a martingale with bounded differences to which

Azuma-Hoeffding’s inequality can be applied.

» To show that (Z;) _ . is a martingale, write
~1
Ly =2y ;1 + :UT(Z’?\L) LA,

and use the property of noise that E[n, | #| = 0.
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Showing the Martingale property

Definition 0.1: A stochastic process (Z,,)
n € N) if:

1. E[|Z,]] < oc.

2. Z, is adapted to 7.

3. E|Z,,,1 | %] = Z, for eachn € N.

oy isa Martingale with respect to (F, :

» BlZ, | FH] =2, + xT(ZQ)_lE[mAﬂt | 55] =2y
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A Static Algorithm: Sample Complexity

o [Soare et. al. (2014)] prove a uniform high probability bound on the estimation error.

Theorem 0.1: With probability at least 1 — §, for all £ > 1 and for all x € [K],
’xT (0; — 0*) <20 |z 4 \/2 log(%).

- - [ dlog( X>
Using this, they were able to show a sample complexity of O ( g( ° ) ) , hiding

many factors, A ., = max, .|z — z*|.
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Adaptivity breaks the Martingale

In adaptive strategies, the chosen arm x 4 depends on the past rewards
R{,Ry,... R, ;.

Therefore, z 4 is not conditionally independent of the past noise (7y, ..., 7;_1).
Recall showing (Z,),_

conditioned on the past.

is a Martingale, relied crucially z 4 and 7, being independent

ElZ, | %] =2, + wT(Eﬁ)_lE[wAtm | \9'2] = 24

In adaptive processes, this is no longer true since

E[l‘Atm | 31;] a xAtE[nt | F].
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Self Normalized Concentration for adaptive strategies

Theorem 0.2: [Abbasi et. al, 2011] In the Linear Bandit with conditionally -R
subGaussian noise, if the ¢, norm of the parameter 6 is less than S and the arm
selection only depends on the previous observations, then the following statement
holds with probability at least 1 — 4,

a7 (5, 0)| < ol G

~1
2

where C, is defined as C,, = R\/Ql (det(z%)ﬁgdet ) + VS,
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 To minimize samples, we should pull the arm that most shrinks the confidence
ellipsoid at each step.
« Static Rule: (Soare et.al, 2014):
» Their strategy makes a sequence of selection, x,, to be
b I ]
where Yy = {z —a' | z,2" € {x{, ...,z }}.
» minimizes all the worst case directions equally.
 Adaptive rule: (Xu et. al, 2017):

X7, (1g, Jt) := arg mxin |y (2, 5e) ”(zg)—l ;

n

where y(iy, j;) = x; — ;.

 Only focus on directions between the true best arm and it’s competitors.
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 [Xu et. al, 2017] propose a strategy inspired from this, called LinGapE, which at each
step t, first chooses two arms:

» The arm with the largest estimated reward ,.
» The most ambiguous arm 7,.

-
> Then, it pulls the most informative arm to estimate the gap (CCZ-t —x jt) 6).
 Such an arm can be pulled greedily, where

- . -1 ,. .
By = I3 KL (905 (A, + 202]) " y(Gs5t) ).
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They propose another strategy to select the most informative arm.

Define an “ideal” sampling proportion. Let p*(y(¢,, j;)) be the ratio of the arm ¢
appearing in the sequence x’ (i,, j,) when n — oo.

Let T, ;) be the number of times an arm a has been pulled until the ¢-th round.
At t + 1 pick an arm according to:

7 —= arg min . 2
t+1 a€K]:p% (y(iy,5,))>0 P (y(itajt»
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Algorithm 1: LinGapE

Input: accuracy ¢, confidence level §, noise level R,
norm S of unknown parameter 6,
regularization parameter A

Output: the arm a* which satisfies stopping

condition (1)

Set Ag < AI, by + 0, t + 0;

// Initialize by pulling each arm once

for i € [K] do

t—t+1;
Observe r; < ;] 0 + &, and update A; and b;

Loop
// Select which gap to examine
(i1, je, B(t)) < Select-direction(t);
if B(t) < e then
L return i; as the best arm a*;
// Pull the arm based on the gap
Pull the arm a;1 based on (9) or (12) ;
t—t+1;
Observe ry a:;rtﬂ + &¢, and update A; and by;
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Algorithm 2: Select-direction

Procedure Select-direction(?):
0 < A7 by

it <= arg mMax;c(g] (x;l-é?)
Jt < arg max;c (g EA (7, %¢) + Be(4,1t));

B(t) — max;e K](A ( ?’1’?) + /Bt(ja ?’1’2))7
return (Zta Jﬁa ( ))7
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Sample Complexity Scaling;:

- Static Allocation: Treats every arm as if the gap were the smallest gap, A ;, =
» Samples needed: N ~ O(K d log(%)), for a large enough .

AQ
« LinGAPE: Uses actual gaps.

a*

min

» N =~ O(Hdlog(l%)), where H =~ Zi’jE[K] maX(s,H}i,E?j),where

(Tqe — ;) 0 if (i # a¥)
A, = . Tooep /.
arg min ;g (e — ;) 0 if (i = a*)
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