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Best Arm Identification - The General Setting
• The learner and the environment interact sequentially over some number of rounds.

The number of rounds is not fixed in advance.

• In each round 𝑡 = 1, 2, … the learner chooses an action 𝐴𝑡 from a fixed finite set,
which is fed to the environment.

• The environment then samples a reward 𝑅𝑡 from some distribution which depends on
𝐴𝑡.

• The goal of the learner is to identify, with high probability, an action close enough to
the optimal action, in as few rounds of interaction as possible.
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Best Arm Identification - The Linear Bandit Setting
• The actions (also called arms) are denoted with the set [𝐾].

• Each arm 𝑖 ∈ [𝐾] has an associated known feature vector 𝑥𝑖 ∈ ℝ𝑑, for some 𝑑 ≥ 1.

• The rewards are modeled as

𝑅𝑡 = 𝑥⊤
𝐴𝑡

𝜃∗ + 𝜂𝑡,

where 𝜃∗ ∈ ℝ𝑑 is an unknown parameter and 𝜂𝑡 is noise.

• Denote

ℱ𝑡 = 𝜎(𝐴1, 𝑅1, …, 𝐴𝑡−2, 𝑅𝑡−2, 𝐴𝑡−1)

the 𝜎-algebra summarizing the information available just before the reward 𝑅𝑡 is
observed.
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Best Arm Identification - The Linear Bandit Setting
• We assume that the noise is conditionally 𝑅-sub-Gaussian, i.e.,

𝔼[exp(𝜆𝜂𝑡) | ℱ𝑡] ≤ exp(𝜆2𝑅2

2
).

• Note that this implies 𝔼[𝜂𝑡  | ℱ𝑡] = 0 and thus 𝔼[𝑅𝑡  | ℱ𝑡] = 𝑥⊤
𝐴𝑡

𝜃∗.

• Denote 𝑎∗ = arg max𝑖∈[𝐾] 𝑥⊤
𝑖 𝜃∗.

• Goal: Design an algorithm that given 𝜀, 𝛿 ∈ (0, 1) outputs an arm 𝑎 such that

ℙ{𝑥⊤
𝑎∗𝜃∗ − 𝑥⊤

�̂� 𝜃∗ ≥ 𝜀} ≤ 𝛿

in as few rounds of interaction as possible.
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Comparison with Multi Armed Bandits

• Linear bandits setting generalizes the multi-armed bandits setting.

• To see this, let 𝑥𝑖 = 𝑒𝑖 be the 𝑖th standard basis vector in ℝ𝑑.
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Static vs Adaptive Algorithms

• In static algorithms the learner chooses the action sequence 𝐴1, 𝐴2, … before
observing the rewards, and then estimates the best action in an “offline” manner.

• In adaptive algorithms the learner chooses each action 𝐴𝑡 as a function of the past
observations. This creates probabilistic dependencies in the stochastic process
𝐴1, 𝑅1, 𝐴2, 𝑅2, …, making the analysis challenging, as we will se.
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A General Strategy: Constructing Confidence Sets
• At time 𝑡 we have observed the history 𝐻𝑡 = (𝐴1, 𝑅1, …, 𝐴𝑡−1, 𝑅𝑡−1).

• Using 𝐻𝑡 we estimate two quantities:

‣ an estimator 𝜃𝑡 of the unknown parameter 𝜃∗, and

‣ a confidence ellipsoid 𝐶𝑡 such that it contains 𝜃∗ with high probability.

• We want to choose actions in a manner that shrinks the confidence ellipsoids as
quickly as possible.
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Interlude: Least Squares Regression
• Suppose you observe i.i.d. data (𝑥1, 𝑦1), …, (𝑥𝑛, 𝑦𝑛) ∈ (ℝ𝑑, ℝ).

• You assume that there exists 𝑤∗ ∈ ℝ𝑑 such that 𝑋𝑤∗ ≈ 𝑦, where 𝑋 is the 𝑛 × 𝑑
matrix containing 𝑥𝑖 in its 𝑖th row and 𝑦 is the column vector containing 𝑦𝑖’s.

• In ℓ2-regularized regression (also called ridge regression) we find

𝑤RR = arg min
𝑤∈ℝ𝑑

‖𝑋𝑤 − 𝑦‖2
2 + 𝜆‖𝑤‖2

2.

• It can be shown that

𝑤RR = (𝑋⊤𝑋 + 𝜆𝐼)−1𝑋⊤𝑦.

• Note that 𝑋⊤𝑋 = ∑𝑛
𝑖=1 𝑥𝑖𝑥⊤

𝑖 .
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A Static Algorithm: Estimating 𝜃𝑛
• A similar strategy as above can be applied to linear bandits.

• If the actions are chosen in a static manner, then the data (𝑥𝐴1
, 𝑅1), …, (𝑥𝐴𝑛

, 𝑅𝑛)
becomes i.i.d.

• Define

Σ𝜆
𝑛 = ∑

𝑛

𝑖=1
𝑥𝐴𝑖

𝑥⊤
𝐴𝑖

+ 𝜆𝐼, 𝑏𝑛 = ∑
𝑛

𝑖=1
𝑥𝐴𝑖

𝑅𝑖.

• Our estimate 𝜃𝑛 of 𝜃∗ then becomes

𝜃𝑛 = (Σ𝜆
𝑛)−1𝑏𝑛.
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A Static Algorithm: Estimating Confidence Ellipsoids
• To get a confidence ellipsoid we use Azuma-Hoeffding’s inequality.
• Using union bound over all possible 𝑥 ∈ {𝑥1, …, 𝑥𝐾}, it suffices to upper bound

|𝑥⊤(𝜃𝑛 − 𝜃∗)|.

• This can be written as

|𝑥⊤(Σ𝜆
𝑛)−1(∑

𝑛

𝑖=1
𝑥𝐴𝑖

𝜂𝑖)|
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A Static Algorithm: Estimating Confidence Ellipsoids
• If we now define

𝑍𝑡 = 𝑥⊤(Σ𝜆
𝑛)−1(∑

𝑡

𝑖=1
𝑥𝐴𝑖

𝜂𝑖),

then the sequence (𝑍𝑡)𝑡≥1 becomes a martingale with bounded differences to which
Azuma-Hoeffding’s inequality can be applied.

• To show that (𝑍𝑡)𝑡≥1 is a martingale, write

𝑍𝑡 = 𝑍𝑡−1 + 𝑥⊤(Σ𝜆
𝑛)−1𝑥𝐴𝑡

𝜂𝑡

and use the property of noise that 𝔼[𝜂𝑡  | ℱ𝑡] = 0.
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Showing the Martingale property

Definition 0.1 : A stochastic process (𝑍𝑛)𝑛∈ℕ is a Martingale with respect to (ℱ𝑛 :
𝑛 ∈ ℕ) if:
1. 𝔼[|𝑍𝑛|] < ∞.
2. 𝑍𝑛 is adapted to ℱ𝑛.
3. 𝔼[𝑍𝑛+1 ∣ ℱ𝑛] = 𝑍𝑛 for each 𝑛 ∈ ℕ.

• 𝔼[𝑍𝑡 ∣ ℱ𝑡] = 𝑍𝑡−1 + 𝑥⊤(Σ𝜆
𝑛)−1𝔼[𝑥𝐴𝑡

𝜂𝑡 ∣ ℱ𝑡] = 𝑍𝑡−1.
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A Static Algorithm: Sample Complexity

• [Soare et. al. (2014)] prove a uniform high probability bound on the estimation error.

Theorem 0.1 :  With probability at least 1 − 𝛿, for all 𝑡 ≥ 1 and for all 𝑥 ∈ [𝐾],
|𝑥⊤(𝜃𝑡 − 𝜃∗)| ≤ 2𝜎 ‖𝑥‖𝐴−1

𝑡
√2 log(6𝑛2𝐾

𝛿𝜋2 ).

• Using this, they were able to show a sample complexity of �̃�(
𝑑 log(𝐾2

𝛿 )
Δ2

min
), hiding

many factors, Δmin = max𝑥,𝑥′ |𝑥 − 𝑥∗|.
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Adaptivity breaks the Martingale

• In adaptive strategies, the chosen arm 𝑥𝐴𝑡
 depends on the past rewards

𝑅1, 𝑅2, …, 𝑅𝑡−1.
• Therefore, 𝑥𝐴𝑡

 is not conditionally independent of the past noise (𝜂1, …, 𝜂𝑡−1).
• Recall showing (𝑍𝑡)𝑡≥0 is a Martingale, relied crucially 𝑥𝐴𝑡

 and 𝜂𝑡 being independent
conditioned on the past.

𝔼[𝑍𝑡 ∣ ℱ𝑡] = 𝑍𝑡−1 + 𝑥⊤(Σ𝜆
𝑛)−1𝔼[𝑥𝐴𝑡

𝜂𝑡 ∣ ℱ𝑡] = 𝑍𝑡−1

• In adaptive processes, this is no longer true since

𝔼[𝑥𝐴𝑡
𝜂𝑡 ∣ ℱ𝑡] ≠ 𝑥𝐴𝑡

𝔼[𝜂𝑡 ∣ ℱ𝑡].
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Self Normalized Concentration for adaptive strategies

Theorem 0.2 : [Abbasi et. al, 2011] In the Linear Bandit with conditionally -𝑅
subGaussian noise, if the ℓ2 norm of the parameter 𝜃 is less than 𝑆 and the arm
selection only depends on the previous observations, then the following statement
holds with probability at least 1 − 𝛿,

|𝑥⊤(𝜃𝑛
𝜆 − 𝜃)| ≤ ‖𝑥‖(Σ𝜆

𝑛)−1𝐶𝑛,

where 𝐶𝑛 is defined as 𝐶𝑛 = 𝑅√2 log(det(Σ𝜆
𝑛)

1
2 ⋅det(𝜆𝐼)−1

2

𝛿 ) +
√

𝜆𝑆.
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• To minimize samples, we should pull the arm that most shrinks the confidence
ellipsoid at each step.

• Static Rule: (Soare et.al, 2014):
‣ Their strategy makes a sequence of selection, 𝐱𝑛 to be

arg min
𝐱𝑛

max
𝑦∈𝒴

‖𝑦‖(Σ𝜆
𝑛)−1 ,

where 𝒴 = {𝑥 − 𝑥′ ∣ 𝑥, 𝑥′ ∈ {𝑥1, …, 𝑥𝐾}}.
‣ minimizes all the worst case directions equally.

• Adaptive rule: (Xu et. al, 2017):

𝐱∗
𝑛(𝑖𝑡, 𝑗𝑡) ≔ arg min

𝐱𝑛
‖𝑦(𝑖𝑡, 𝑗𝑡)‖(Σ𝜆

𝑛)−1 ,

where 𝑦(𝑖𝑡, 𝑗𝑡) = 𝑥𝑖𝑡
− 𝑥𝑗𝑡

.
• Only focus on directions between the true best arm and it’s competitors.
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• [Xu et. al, 2017] propose a strategy inspired from this, called LinGapE, which at each
step t, first chooses two arms:
‣ The arm with the largest estimated reward 𝑖𝑡.
‣ The most ambiguous arm 𝑗𝑡.
‣ Then, it pulls the most informative arm to estimate the gap (𝑥𝑖𝑡

− 𝑥𝑗𝑡
)

⊤
𝜃).

• Such an arm can be pulled greedily, where

𝑎𝑡+1 = arg min
𝑎∈[𝐾]

(𝑦(𝑖𝑡, 𝑗𝑡)
⊤(𝐴𝑡 + 𝑥𝑎𝑥⊤

𝑎 )−1𝑦(𝑖𝑡, 𝑗𝑡)).

17/22



• They propose another strategy to select the most informative arm.
• Define an “ideal” sampling proportion. Let 𝑝∗(𝑦(𝑖𝑡, 𝑗𝑡)) be the ratio of the arm 𝑖

appearing in the sequence 𝐱∗
𝑛(𝑖𝑡, 𝑗𝑡) when 𝑛 → ∞.

• Let 𝑇𝑎(𝑡) be the number of times an arm 𝑎 has been pulled until the 𝑡-th round.
• At 𝑡 + 1 pick an arm according to:

𝑎𝑡+1 = arg min
𝑎∈[𝐾]:𝑝∗

𝑎(𝑦(𝑖𝑡,𝑗𝑡))>0

𝑇𝑎(𝑡)

𝑝∗
𝑎(𝑦(𝑖𝑡, 𝑗𝑡))
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Sample Complexity Scaling:

• Static Allocation: Treats every arm as if the gap were the smallest gap, Δmin =
min𝑖≠𝑎∗ (𝑥𝑎∗ − 𝑥𝑖)

⊤𝜃.
‣ Samples needed: 𝑁 ≈ 𝑂(𝐾 𝑑

Δ2
min

log(𝐾
𝛿 )), for a large enough 𝜆.

• LinGAPE: Uses actual gaps.
‣ 𝑁 ≈ 𝑂(𝐻𝑑 log(𝐾2

𝛿 )), where 𝐻 ≈ ∑𝑖,𝑗∈[𝐾]
1

max(𝜀,𝜀+Δ𝑖
3 ,

𝜀+Δ𝑗
3 )

, where

Δ𝑖 ≔
{{
{
{{(𝑥𝑎∗ − 𝑥𝑖)

⊤𝜃 if (𝑖 ≠ 𝑎∗)
arg min𝑗∈[𝐾] (𝑥𝑎∗ − 𝑥𝑗)

⊤𝜃 if (𝑖 = 𝑎∗)
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