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Stochastic Process

▶ {Xt}t∈T is a random process if it is a collection of random variables on the same
probability space, indexed by elements of some set T.

▶ If T = [n], then it is a random vector.

▶ If Xt is an n dimensional normal random variable, where T ⊂ Rn and then it is
the canonical Gaussian process.
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Expected Supremum

▶ In many statistical problems, we want to control E supt∈T Xt.

▶ For example, if T = F , which is a function class and z = [z1, z2, . . . , zn] is a data
vector.

▶ If X f = ⟨ f (z), σ⟩, where σi are Rademacher r.v., then Eσ sup f∈F ⟨ f (z), σ⟩ is the
Rademacher complexity, which measures the expressiveness of a function class.

▶ In many scenarios, like regression, it becomes important to control the expected
supremum of the process.
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Why is this difficult?

▶ Note that Xt ≤ supt Xt and by monotonicity, EXt ≤ E supt Xt, which further
implies that supt EXt ≤ E supt Xt.
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Background

▶ {Xt}t∈T is a subGaussian process with respect to a metric, d on T if for any
s, t ∈ T and λ ∈ R,

Eeλ·(Xt−Xs) ≤ e
λ2
2 ·d2(s,t)
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Background

▶ We will see Dudley’s Inequality for Gaussian process, which is {Xt}t∈T, where Xt
is a mean 0 Gaussian random variable.

▶ Currently, T is an arbitrary set, without any geometry on it.

▶ To add geometry, we induce the Euclidean metric d : T × T → R,
d(s, t) =∥s − t∥2.

▶ It can be verified that the zero mean Gaussian process is subgaussian w.r.t. the
Euclidean metric, i.e. for any λ ∈ R and any s, t ∈ T,

Eeλ·(Xt−Xs) ≤ e
λ2
2 ·∥s−t∥2

2

▶ This means that (T, d) is a metric space and it satisfies triangle inequality, which
is what we need for our main result.
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Background: Covering Numbers
▶ N(T, d, ε) is the smallest number of ”balls” of radius ε w.r.t. a distance d that

can cover T.

▶ For every t ∈ T there exists a point t′ in the ε cover such that d(t, t′) ≤ ε.

Figure: Geometrically, the union of balls of radius δ centered at {θ1, θ2 . . . θN} cover T.
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Dudley’s Inequality

▶ Single scale version: What if we took just 1 net?

▶ If π(t) is the closest point to t on a net,

E sup
t∈T

|Xt| ≤ E sup
t∈T

∣∣∣Xπ(t)

∣∣∣+ E sup
t∈T

∣∣∣Xπ(t) − Xt

∣∣∣ .

▶ The first can be controlled since supt∈T → supπ(T)∈Net, which is finite. But the
second term is uncertain.

Theorem (1967)

Any mean 0 Gaussian process satisfies the following for some constant C > 0.

E sup
t∈T

Xt ≤ C ·
∫ ∞

0

√
log(N(T, d, ε))dε
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Proof

▶ Note that it suffices to give an upper bound on E sup
∣∣Xt − Xt0

∣∣ for some t0, since
E supt|Xt| = E supt

∣∣Xt − E[Xt0

∣∣] ≤ E supt

∣∣Xt − Xt0

∣∣ by Jensens inequality.

▶ Now we begin the multiscale approximation of T.

▶ Let diam(T) = 1 and let t0 be the center of the ball that covers the entire T.

▶ Choose ε i =
1
2i nets, Tk of T, for i ∈ N. This means that for every t ∈ T there

exists a ti ∈ Ti such that d(t, ti) ≤ ε i.
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Chaining

▶ Suppose that we are at t. We start from the coarsest approximation, t0 and find a
path to t through a chain at points π1(t), π2(t), . . ., where each πi(t) ∈ Ti.

▶ Xt0 − Xt = (Xt0 − Xπ1(t)) + (Xπ1(t) − Xπ2(t)) . . . (Xπκ (t)− Xt)
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Proof

▶ Bound each link in the chain as
∣∣Xt0 − Xt

∣∣ ≤ ∑∞
i=1

∣∣∣Xπi−1(t) − Xπi(t)
∣∣∣

▶ Since the distance is a metric, we know that
d(πi−1(t), πi(t)) ≤ d(πi−1(t), t) + d(t, πi(t)) ≤ 1

2i−1 +
1
2i =

3
2i

▶ Taking supremum, we have that
E supt∈T

∣∣Xt0 − Xt
∣∣ ≤ ∑∞

i=1 E sup u∈Ti−1
v∈Ti

d(u,v)≤3εi

|Xu − Xv|.
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▶ It can be proved that Xu − Xv is subgaussian under d, and therefore the quantity
can be bounded by the sizes of Ti and Ti−1 as follows.

eλ·E sup|Xu−Xv| ≤ Eeλ·sup|Xu−Xv| = E sup eλ·|Xu−Xv|

≤ ∑
v,u

Eeλ·|Xu−Xv| ≤|Ti||Ti−1| e
λ2
2 ·d2(s,t)

▶ Therefore the second term can be upper bounded as follows.

E sup|Xu − Xv| ≤ d(u, v) ·
√

2 log(|Ti||Ti−1|) ≤ 3ε i ·
√

2 log(|Ti|2)

▶ This gives the following discrete bound

E sup
t∈T

∣∣Xt0 − Xt
∣∣ ≤ C ·

∞

∑
i=1

1
2i

√
log(N(T, d, ε i))
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Final touches

▶ This can be interpreted as a Reimannian sum with ∆ε = 1
2i−1 − 1

2i thus giving us

the desired bound of C ·
∫ ∞

i=1
1
2i

√
log(N, T, ε)dε.

▶ Q.E.D.
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Takeway

▶ Dudley’s Inequality applies to subgaussian process, which include Gaussian and
Rademacher.

▶ If you want to control the expected supremum, you might want to show that your
process is subGaussian under some (pseudo) metric.
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Example

▶ Let T = Bn
2 . Note that N ≤ ( 3

ε )
n, then Dudley’s inequality states that

E supt Xt ≤ C ·
∫ 1

0

√
n · log(3/ε)dε ≤ C

√
n.
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