Chaining and Dudley's Inequality

Aarshvi Gajjar

Stochastic Process

- $\left\{X_{t}\right\}_{t \in \mathbb{T}}$ is a random process if it is a collection of random variables on the same probability space, indexed by elements of some set \mathbb{T}.
- If $\mathbb{T}=[n]$, then it is a random vector.
- If X_{t} is an n dimensional normal random variable, where $\mathbb{T} \subset \mathbb{R}^{n}$ and then it is the canonical Gaussian process.

Expected Supremum

- In many statistical problems, we want to control $\mathbb{E} \sup _{t \in \mathbb{T}} X_{t}$.
- For example, if $\mathbb{T}=\mathcal{F}$, which is a function class and $z=\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ is a data vector.
- If $X_{f}=\langle f(z), \sigma\rangle$, where σ_{i} are Rademacher r.v., then $\mathbb{E}_{\sigma} \sup _{f \in \mathcal{F}}\langle f(z), \sigma\rangle$ is the Rademacher complexity, which measures the expressiveness of a function class.
- In many scenarios, like regression, it becomes important to control the expected supremum of the process.

Why is this difficult?

- Note that $X_{t} \leq \sup _{t} X_{t}$ and by monotonicity, $\mathbb{E} X_{t} \leq \mathbb{E} \sup _{t} X_{t}$, which further implies that $\sup _{t} \mathbb{E} X_{t} \leq \mathbb{E} \sup _{t} X_{t}$.

Background

- $\left\{X_{t}\right\}_{t \in \mathbb{T}}$ is a subGaussian process with respect to a metric, d on \mathbb{T} if for any $s, t \in \mathbb{T}$ and $\lambda \in \mathbb{R}$,

$$
\mathbb{E} e^{\lambda \cdot\left(X_{t}-X_{s}\right)} \leq e^{\frac{\lambda^{2}}{2} \cdot d^{2}(s, t)}
$$

Background

- We will see Dudley's Inequality for Gaussian process, which is $\left\{X_{t}\right\}_{t \in \mathbb{T}}$, where X_{t} is a mean 0 Gaussian random variable.
- Currently, \mathbb{T} is an arbitrary set, without any geometry on it.
- To add geometry, we induce the Euclidean metric $d: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$, $d(s, t)=\|s-t\|_{2}$.
- It can be verified that the zero mean Gaussian process is subgaussian w.r.t. the Euclidean metric, i.e. for any $\lambda \in \mathbb{R}$ and any $s, t \in \mathbb{T}$,

$$
\mathbb{E} e^{\lambda \cdot\left(X_{t}-X_{s}\right)} \leq e^{\frac{\lambda^{2}}{2} \cdot\|s-t\|_{2}^{2}}
$$

- This means that (\mathbb{T}, d) is a metric space and it satisfies triangle inequality, which is what we need for our main result.

Background: Covering Numbers

- $N(\mathbb{T}, d, \varepsilon)$ is the smallest number of "balls" of radius ε w.r.t. a distance d that can cover \mathbb{T}.
- For every $t \in \mathbb{T}$ there exists a point t^{\prime} in the ε cover such that $d\left(t, t^{\prime}\right) \leq \varepsilon$.

Figure: Geometrically, the union of balls of radius δ centered at $\left\{\theta^{1}, \theta^{2} \ldots \theta^{N}\right\}$ cover \mathbb{T}.

Dudley's Inequality

- Single scale version: What if we took just 1 net?
- If $\pi(t)$ is the closest point to t on a net,

$$
\mathbb{E} \sup _{t \in T}\left|X_{t}\right| \leq \mathbb{E} \sup _{t \in T}\left|X_{\pi(t)}\right|+\mathbb{E} \sup _{t \in T}\left|X_{\pi(t)}-X_{t}\right| .
$$

- The first can be controlled since $\sup _{t \in \mathbb{T}} \rightarrow \sup _{\pi(T) \in \text { Net }}$, which is finite. But the second term is uncertain.

Theorem (1967)

Any mean 0 Gaussian process satisfies the following for some constant $C>0$.

$$
\mathbb{E} \sup _{t \in \mathbb{T}} X_{t} \leq C \cdot \int_{0}^{\infty} \sqrt{\log (N(\mathbb{T}, d, \varepsilon))} d \varepsilon
$$

Proof

- Note that it suffices to give an upper bound on $\mathbb{E} \sup \left|X_{t}-X_{t_{0}}\right|$ for some t_{0}, since $\mathbb{E} \sup _{t}\left|X_{t}\right|=\mathbb{E} \sup _{t}\left|X_{t}-\mathbb{E}\left[X_{t_{0}} \mid\right] \leq \mathbb{E} \sup _{t}\right| X_{t}-X_{t_{0}} \mid$ by Jensens inequality.
- Now we begin the multiscale approximation of \mathbb{T}.
- Let $\operatorname{diam}(\mathbb{T})=1$ and let t_{0} be the center of the ball that covers the entire \mathbb{T}.
- Choose $\varepsilon_{i}=\frac{1}{2^{i}}$ nets, \mathbb{T}_{k} of \mathbb{T}, for $i \in \mathbb{N}$. This means that for every $t \in \mathbb{T}$ there exists a $t_{i} \in \mathbb{T}_{i}$ such that $d\left(t, t_{i}\right) \leq \varepsilon_{i}$.

Chaining

- Suppose that we are at t. We start from the coarsest approximation, t_{0} and find a path to t through a chain at points $\pi_{1}(t), \pi_{2}(t), \ldots$, where each $\pi_{i}(t) \in \mathbb{T}_{i}$.

- $X_{t_{0}}-X_{t}=\left(X_{t_{0}}-X_{\pi_{1}(t)}\right)+\left(X_{\pi_{1}(t)}-X_{\pi_{2}(t)}\right) \ldots\left(X_{\pi_{\kappa}}(t)-X_{t}\right)$

Proof

- Bound each link in the chain as $\left|X_{t_{0}}-X_{t}\right| \leq \sum_{i=1}^{\infty}\left|X_{\pi_{i-1}(t)}-X_{\pi_{i}}(t)\right|$
- Since the distance is a metric, we know that

$$
d\left(\pi_{i-1}(t), \pi_{i}(t)\right) \leq d\left(\pi_{i-1}(t), t\right)+d\left(t, \pi_{i}(t)\right) \leq \frac{1}{2^{i-1}}+\frac{1}{2^{i}}=\frac{3}{2^{i}}
$$

- Taking supremum, we have that

$$
\mathbb{E ~ s u p}_{t \in \mathbb{T}}\left|X_{t_{0}}-X_{t}\right| \leq \sum_{i=1}^{\infty} \mathbb{E} \sup _{\substack{u \in \mathbb{T}_{i-1} \\ v \in \mathbb{T}_{i} \\ d(u, v) \leq 3 \varepsilon_{i}}}\left|X_{u}-X_{v}\right| .
$$

- It can be proved that $X_{u}-X_{v}$ is subgaussian under d, and therefore the quantity can be bounded by the sizes of \mathbb{T}_{i} and \mathbb{T}_{i-1} as follows.

$$
\begin{aligned}
e^{\lambda \cdot \mathbb{E} \sup \left|X_{u}-X_{v}\right|} \leq \mathbb{E} e^{\lambda \cdot \sup \left|X_{u}-X_{v}\right|} & =\mathbb{E} \sup e^{\lambda \cdot\left|X_{u}-X_{v}\right|} \\
& \leq \sum_{v, u} \mathbb{E} e^{\lambda \cdot\left|X_{u}-X_{v}\right|} \leq\left|\mathbb{T}_{i}\right|\left|\mathbb{T}_{i-1}\right| e^{\frac{\lambda^{2}}{2} \cdot d^{2}(s, t)}
\end{aligned}
$$

- Therefore the second term can be upper bounded as follows.

$$
\mathbb{E} \sup \left|X_{u}-X_{v}\right| \leq d(u, v) \cdot \sqrt{2 \log \left(\left|\mathbb{T}_{i}\right|\left|\mathbb{T}_{i-1}\right|\right)} \leq 3 \varepsilon_{i} \cdot \sqrt{2 \log \left(\left|\mathbb{T}_{i}\right|^{2}\right)}
$$

- This gives the following discrete bound

$$
\mathbb{E} \sup _{t \in \mathbb{T}}\left|X_{t_{0}}-X_{t}\right| \leq C \cdot \sum_{i=1}^{\infty} \frac{1}{2^{i}} \sqrt{\log \left(N\left(\mathbb{T}, d, \varepsilon_{i}\right)\right)}
$$

Final touches

- This can be interpreted as a Reimannian sum with $\Delta \varepsilon=\frac{1}{2^{i-1}}-\frac{1}{2^{i}}$ thus giving us the desired bound of $C \cdot \int_{i=1}^{\infty} \frac{1}{2^{i}} \sqrt{\log (N, \mathbb{T}, \varepsilon)} d \varepsilon$.
- Q.E.D.

Takeway

- Dudley's Inequality applies to subgaussian process, which include Gaussian and Rademacher.
- If you want to control the expected supremum, you might want to show that your process is subGaussian under some (pseudo) metric.

Example

- Let $\mathbb{T}=B_{2}^{n}$. Note that $N \leq\left(\frac{3}{\varepsilon}\right)^{n}$, then Dudley's inequality states that $\mathbb{E} \sup _{t} X_{t} \leq C \cdot \int_{0}^{1} \sqrt{n \cdot \log (3 / \varepsilon)} d \varepsilon \leq C \sqrt{n}$.

References

- High Dimensional Statistics (section 5.3), Martin Wainwright.
- High Dimensional Probability (Chapter 8), Roman Vershynin.
- Notes on Rademacher complexity by Renjie Liao.
- Lecture notes for CMU's Advanced Statistical Learning theory course by Alessandro Rinaldo.

