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Motivation

▶ Most ML models are point predictors.

▶ These predictions can trigger important decisions so it becomes necessary to also
report an uncertainty along with the predictions.

▶ For instance, after observing some data, we want to report a range of possible
values such that for an unseen sample, the label lies in the range 90% of the time.

▶ If the interval is wide, then at least we know what we don’t know about the
prediction.



Goal

▶ Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be i.i.d. pairs of (features,labels) sampled
from a distribution P on X × Y.

▶ Let (Xn+1, Yn+1) be a new independent observation from P .

▶ Fix an error level α ∈ (0, 1).

▶ The goal is to find a prediction band, Ĉn without any assumptions on P .

Definition (Prediction Band)

For a given α ∈ (0, 1), Ĉn is a map from X to subsets of Y such that for a new
observation (Xn+1, Yn+1),

P{Yn+1 ∈ Ĉn(Xn+1)} ≥ 1− α.

▶ For example, if α = 0.1, we want Yn+1 to belong to Ĉn(Xn+1) w.p. 0.9.



Dumb method

▶ Set Ĉn = Y always. Then, P{Yn+1 ∈ Ĉn(Xn+1)} = 1.

▶ But this does not give us any useful information.

▶ We want the prediction band to be as small as possible, while still giving us valid
coverage results.



Conformal Prediction

▶ Conformal Prediction: This is a relatively new framework for converting point
predictions into prediction sets with finite sample coverage.

▶ Classical linear regression prediction intervals are based on well specified model
assumptions.

▶ First introduced by Vovk, Gammerman and Vapnik in 2005, Algorithmic Learning
in a Random World.

▶ Later, in mid 2010s, it was repopularized and translated in less esoteric language
by Lei, Wasserman, et. al. where they give a general framework for distribution
free predictive inference.

▶ Can be applied to black box prediction methods.



First Key Idea: Rank based statistics

▶ Consider the simple setting of Y1, Y2, . . . Yn sampled i.i.d. from some distribution
on R.

▶ Suppose we want to find a one sided interval, (−∞, q̂n], where q̂n is a function of
the data {Y1, Y2, . . . , Yn}, such that

P{Yn+1 ≤ q̂n} ≥ 1− α.



▶ Since Y1, Y2, . . . , Yn, Yn+1 is i.i.d, the rank of Yn+1 among Y1, Y2, . . . , Yn+1 is
uniformly distributed.

▶ Suppose Rn+1 is the rank of Yn+1, or more precisely,
Rn+1(Yn+1) =

∣∣j ∈ [n+ 1] : Yj ≤ Yn+1

∣∣
▶ Then P{Rn+1 = k} = 1

n+1 for any k ∈ [n+1] and probability that Yn+1 is among

the smallest k elements is k
n+1 .

▶ Therefore, the probability that Yn+1 is among the ⌈(1− α)(n+ 1)⌉ smallest
values is ≥ 1− α.



Claim

P{Yn+1 is among the k smallest of Y1, . . . Yn, Yn+1} ≥ 1− α

⇐⇒

P{Yn+1 is among the k smallest of Y1, . . . Yn} ≥ 1− α

Proof.
Consider the complement event:

{Yn+1 > k smallest elements of Y1, . . . Yn+1}

⇐⇒

{Yn+1 > k smallest elements of Y1, . . . Yn}



▶ Again, we are considering order statistics for Y1, Y2, . . . , Yn, Yn+1. But since we
do not know Yn+1, we can only work with Y1, Y2, . . . , Yn.

▶ The previous claim allows us to do that.

▶ Define

q̂n =

{
Y(⌈(1−α)(n+1)⌉) if ⌈(1− α)(n+ 1)⌉ ≤ n

∞ Otherwise

▶ Y(k) is the kth order statistic.

▶ As just mentioned, the computation of q̂n can be done using just Y1, Y2, . . . , Yn.



Exchangeability

▶ If you carefully look at our analysis, we did not use the full power of i.i.d. We only
needed exchangeability everywhere.

▶ Exchangeability is defined as

(Y1, Y2, . . . Yn+1)
d
= (Yσ(1), Yσ(2), . . . Yσ(n+1))

for every permutation σ : [n+ 1] → [n+ 1].

▶ Under the exchangeability assumption, the indexing of the random variables is
immaterial.



Application to Regression

▶ Suppose that f̂n is a point predictor trained on (Xi, Yi)
n
i=1.

▶ We want to give a prediction set for Yn+1.

▶ We could look at the residuals, Ri =
∣∣∣Yi − f̂n(Xi)

∣∣∣ for i ∈ [n], and construct

[f̂n(Xn+1)− q̂n, f̂n(Xn+1) + q̂n], where just like previously q̂n = R(⌈(1−α)(n+1)⌉).

▶ But because our model f̂n has already been trained on (Xi, Yi)
n
i=1, the residuals

will be unnaturally small (intuitively, residual for a new data point will be
generally bigger). And so, the interval just constructed undercovers.

▶ More precisely, Yn+1 ∈ Ĉn(Xn+1) ⇐⇒ Rn+1 ≤ kth smallest of (Ri)
n
i=1 will not

hold with probability ≥ 1− α because Rn+1 is not exchangeable with R1, . . . , Rn.



Second Key Idea: Maintain Exchangeability

▶ Split the indices I = [n] into two disjoint sets: I1 and I2, training and calibration
sets.

▶ |I1| = n1 and |I2| = n2.

▶ Fit f̂n1 on data with indices I1.
▶ Obtain the residuals R1, R2, . . . , Rn2 on data with indices I2.
▶ q̂n2 = R(⌈(1−α)(n2+1)⌉).

▶ Conformal set: [f̂n1(x)− q̂n2 , f̂n1(x) + q̂n2 ].

▶
P
(
Yn+1 ∈ Ĉn+1(Xn+1) | (Xi, Yi), i ∈ I1

)
≥ 1− α

.

▶ This holds because conditioned on I1, the calibration residuals of data with
indices I2, R1, R2, . . . , Rn2 and Rn+1 are i.i.d.



Split Conformal Prediction Algorithm



Remarks

▶ Instead of residual, we can take any conformity score, Ri = V (Xi, Yi).

▶ However, the length of the prediction band is constant and does not adapt to the
local hardness of the problem.

▶ Split conformal prediction sacrifices statistical effeciency by splitting the data.



Effect of the quality of f̂

▶ Note that we did not comment on the the prediction accuracy of f̂ .

▶ Better the point predictor, f̂ , tighter the prediction band.

▶ Average length of a prediction set: E(Xi,Yi)∼P,i∈I2

[∫ ∫
Ĉn(x)

dµ(y)dPX(x)
]
,

µ =Lebesgue measure.

▶ Coverage: E(Xi,Yi)∼P,i∈I2

[∫ ∫
Ĉn(x)

dPY |X(y)dPX(x)
]

▶ An inefficient algorithm must somehow put mass at low density regions, which
does not hurt it’s coverage but inflates the length.



Full Conformal Prediction

▶ For efficiency reasons we don’t want to split the data.

▶ Fix any x ∈ X .

▶ Suppose we want to find out whether an arbitrary y ∈ R should be in the
prediction set Ĉn(x).

▶ Suppose we train our prediction algorithm on an augmented training set :
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), (x, y) and obtain a point predictor f̂n,(x,y).

▶ Define

R
(x,y)
i =


∣∣∣Yi − f̂n,(x,y)(Xi)

∣∣∣ , i ∈ [n]∣∣∣y − f̂n,(x,y)(x)
∣∣∣ , i = n+ 1



▶ The full conformal set is defined as

Ĉn = {y : R
(x,y)
n+1 ≤ ⌈(1− α)(n+ 1)⌉ smallest of R

(x,y)
i for i ∈ [n]}

.

▶ The subtle point is that we can get the guarantee of
P{Yn+1 ∈ Ĉn(Xn+1} ≥ 1− α once we plug in (x, y) = (Xn+1, Yn+1), in which
case all the residuals are exchangeable.

▶ This is true only if f̂n,(x,y) does not use the knowledge of the order of the training
data.



Full Conformal Prediction



Remarks

▶ This method is extremely computationally intensive – for every x, we need to refit
f̂n,(x,y) for all y ∈ R. This is infinitely expensive.

▶ Can work practically for prediction algorithms which have a fast way to refit the
point predictor.

▶ Some methods are proposed that lie between split and full conformal prediction.
(Barber et.al, 2021).



Adaptive size of prediction set: Studentized Residuals

▶ Consider split prediction. On I1, we fit both, a point predictor f̂n1 and a variance

predictor, σ̂n1 which fits the standard deviation of the residual,
∣∣∣Y − f̂n1(X)

∣∣∣.
▶ We compute normalized residuals on I2. Ri =

∣∣∣Yi−f̂n1 (Xi)
∣∣∣

σ̂n1 (Xi)
.





Extensions and trends

▶ Designing conformal methods which have good practical performance small set
sizes or balanced coverage across regions in feature space.

▶ Distribution shift: test point has a different distribution from the calibration.

▶ Beyond the exchangeability assumption.

▶ Full conformal prediction to asymmetric algorithms.

▶ Prediction sets that preserve the privacy of the data.

▶ Conformal Predictive distribution – which outputs a probability distribution over
the space Y.

▶ And many more . . .



Resources

▶ Distribution-Free Predictive Inference For Regression, by Lei, Wasserman et. al.
2017.

▶ A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty
Quantification by Angelopoulos & Bates, 2022.

▶ Distribution Free Prediction Bands, by Lei and Wasserman, 2014.

▶ Conformal prediction beyond exchangeability, by Candes, 2022.


