Introduction to Conformal Prediction

Presenter: Aarshvi Gajjar

(ロ) (型) (E) (E) (E) (O)

Motivation

- Most ML models are point predictors.
- These predictions can trigger important decisions so it becomes necessary to also report an uncertainty along with the predictions.
- ► For instance, after observing some data, we want to report a range of possible values such that for an unseen sample, the label lies in the range 90% of the time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

If the interval is wide, then at least we know what we don't know about the prediction.

Goal

- Let (X₁, Y₁), (X₂, Y₂), ..., (X_n, Y_n) be i.i.d. pairs of (features, labels) sampled from a distribution P on X × Y.
- Let (X_{n+1}, Y_{n+1}) be a new independent observation from P.
- Fix an error level $\alpha \in (0, 1)$.
- The goal is to find a prediction band, \hat{C}_n without any assumptions on P.

Definition (Prediction Band)

For a given $\alpha \in (0,1)$, \hat{C}_n is a map from \mathcal{X} to subsets of \mathcal{Y} such that for a new observation (X_{n+1}, Y_{n+1}) ,

$$\mathbb{P}\{Y_{n+1} \in \hat{C}_n(X_{n+1})\} \ge 1 - \alpha.$$

For example, if $\alpha = 0.1$, we want Y_{n+1} to belong to $\hat{C}_n(X_{n+1})$ w.p. 0.9.

Dumb method

- Set $\hat{C}_n = \mathcal{Y}$ always. Then, $\mathbb{P}\{Y_{n+1} \in \hat{C}_n(X_{n+1})\} = 1$.
- But this does not give us any useful information.
- We want the prediction band to be as small as possible, while still giving us valid coverage results.

Conformal Prediction

- Conformal Prediction: This is a relatively new framework for converting point predictions into prediction sets with finite sample coverage.
- Classical linear regression prediction intervals are based on well specified model assumptions.
- First introduced by Vovk, Gammerman and Vapnik in 2005, Algorithmic Learning in a Random World.
- Later, in mid 2010s, it was repopularized and translated in less esoteric language by Lei, Wasserman, et. al. where they give a general framework for distribution free predictive inference.
- Can be applied to black box prediction methods.

First Key Idea: Rank based statistics

- Consider the simple setting of Y₁, Y₂, ... Y_n sampled i.i.d. from some distribution on ℝ.
- Suppose we want to find a one sided interval, $(-\infty, \hat{q}_n]$, where \hat{q}_n is a function of the data $\{Y_1, Y_2, \ldots, Y_n\}$, such that

 $\mathbb{P}\{Y_{n+1} \le \hat{q}_n\} \ge 1 - \alpha.$

- ► Since Y₁, Y₂,..., Y_n, Y_{n+1} is i.i.d, the rank of Y_{n+1} among Y₁, Y₂,..., Y_{n+1} is uniformly distributed.
- Suppose R_{n+1} is the rank of Y_{n+1} , or more precisely, $R_{n+1}(Y_{n+1}) = |j \in [n+1] : Y_j \leq Y_{n+1}|$
- ▶ Then $\mathbb{P}\{R_{n+1} = k\} = \frac{1}{n+1}$ for any $k \in [n+1]$ and probability that Y_{n+1} is among the smallest k elements is $\frac{k}{n+1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► Therefore, the probability that Y_{n+1} is among the $\lceil (1-\alpha)(n+1) \rceil$ smallest values is $\geq 1 - \alpha$.

 $\mathbb{P}\{Y_{n+1} \text{ is among the } k \text{ smallest of } Y_1, \dots Y_n, Y_{n+1}\} \ge 1 - \alpha$

 $\mathbb{P}\{Y_{n+1} \text{ is among the } k \text{ smallest of } Y_1, \dots, Y_n\} \ge 1 - \alpha$

Proof.

Consider the complement event:

$$\{Y_{n+1} > k \text{ smallest elements of } Y_1, \dots Y_{n+1}\}$$

\Leftrightarrow

 $\{Y_{n+1} > k \text{ smallest elements of } Y_1, \ldots, Y_n\}$

・ロト・日本・日本・日本・日本・日本・○○への

- Again, we are considering order statistics for $Y_1, Y_2, \ldots, Y_n, Y_{n+1}$. But since we do not know Y_{n+1} , we can only work with Y_1, Y_2, \ldots, Y_n .
- ▶ The previous claim allows us to do that.

Define

$$\hat{q}_n = \begin{cases} Y_{\left(\left\lceil (1-\alpha)(n+1) \right\rceil \right)} & \text{ if } \left\lceil (1-\alpha)(n+1) \right\rceil \leq n \\ \infty & \text{Otherwise} \end{cases}$$

- $Y_{(k)}$ is the *k*th order statistic.
- As just mentioned, the computation of $\hat{q_n}$ can be done using just Y_1, Y_2, \ldots, Y_n .

Exchangeability

- If you carefully look at our analysis, we did not use the full power of i.i.d. We only needed exchangeability everywhere.
- Exchangeability is defined as

$$(Y_1, Y_2, \dots, Y_{n+1}) \stackrel{d}{=} (Y_{\sigma(1)}, Y_{\sigma(2)}, \dots, Y_{\sigma(n+1)})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

for every permutation $\sigma: [n+1] \rightarrow [n+1]$.

Under the exchangeability assumption, the indexing of the random variables is immaterial.

Application to Regression

- Suppose that \hat{f}_n is a point predictor trained on $(X_i, Y_i)_{i=1}^n$.
- We want to give a prediction set for Y_{n+1} .
- ► We could look at the residuals, $R_i = |Y_i \hat{f}_n(X_i)|$ for $i \in [n]$, and construct $[\hat{f}_n(X_{n+1}) \hat{q}_n, \hat{f}_n(X_{n+1}) + \hat{q}_n]$, where just like previously $\hat{q}_n = R_{(\lceil (1-\alpha)(n+1)\rceil)}$.
- But because our model \hat{f}_n has already been trained on $(X_i, Y_i)_{i=1}^n$, the residuals will be unnaturally small (intuitively, residual for a new data point will be generally bigger). And so, the interval just constructed undercovers.
- More precisely, $Y_{n+1} \in \hat{C}_n(X_{n+1}) \iff R_{n+1} \leq k$ th smallest of $(R_i)_{i=1}^n$ will not hold with probability $\geq 1 \alpha$ because R_{n+1} is not exchangeable with R_1, \ldots, R_n .

Second Key Idea: Maintain Exchangeability

Split the indices I = [n] into two disjoint sets: I₁ and I₂, training and calibration sets.

▶
$$|\mathcal{I}_1| = n_1 \text{ and } |\mathcal{I}_2| = n_2.$$

.

- Fit \hat{f}_{n_1} on data with indices \mathcal{I}_1 .
- ▶ Obtain the residuals $R_1, R_2, \ldots, R_{n_2}$ on data with indices \mathcal{I}_2 .

$$\hat{q}_{n_2} = R_{(\lceil (1-\alpha)(n_2+1)\rceil)}.$$
Conformal set: $[\hat{f}_{n_1}(x) - \hat{q}_{n_2}, \hat{f}_{n_1}(x) + \hat{q}_{n_2}].$

$$\mathbb{P}\left(Y_{n+1} \in \hat{C}_{n+1}(X_{n+1}) \mid (X_i, Y_i), i \in \mathcal{I}_1\right) \ge 1 - \alpha$$

This holds because conditioned on *I*₁, the calibration residuals of data with indices *I*₂, *R*₁, *R*₂, ..., *R*_{n2} and *R*_{n+1} are i.i.d.

Split Conformal Prediction Algorithm

Algorithm 2 Split Conformal Prediction

Input: Data (X_i, Y_i) , i = 1, ..., n, miscoverage level $\alpha \in (0, 1)$, regression algorithm \mathcal{A} **Output:** Prediction band, over $x \in \mathbb{R}^d$ Randomly split $\{1, ..., n\}$ into two equal-sized subsets $\mathcal{I}_1, \mathcal{I}_2$ $\hat{\mu} = \mathcal{A}(\{(X_i, Y_i) : i \in \mathcal{I}_1\})$ $R_i = |Y_i - \hat{\mu}(X_i)|, i \in \mathcal{I}_2$ $d = \text{the kth smallest value in } \{R_i : i \in \mathcal{I}_2\}, \text{ where } k = \lceil (n/2 + 1)(1 - \alpha) \rceil$ Return $C_{\text{split}}(x) = [\hat{\mu}(x) - d, \hat{\mu}(x) + d]$, for all $x \in \mathbb{R}^d$

Remarks

- linear Instead of residual, we can take any *conformity score*, $R_i = V(X_i, Y_i)$.
- However, the length of the prediction band is constant and does not adapt to the local hardness of the problem.
- > Split conformal prediction sacrifices statistical effeciency by splitting the data.

- Note that we did not comment on the the prediction accuracy of \hat{f} .
- Better the point predictor, \hat{f} , tighter the prediction band.
- Average length of a prediction set: $\mathbb{E}_{(X_i,Y_i)\sim P,i\in\mathcal{I}_2}\left[\int \int_{\hat{C}_n(x)} d\mu(y) dP_X(x)\right]$, $\mu = \text{Lebesgue measure.}$
- Coverage: $\mathbb{E}_{(X_i,Y_i)\sim P,i\in\mathcal{I}_2}\left[\int \int_{\hat{C}_n(x)} dP_{Y|X}(y) dP_X(x)\right]$
- An inefficient algorithm must somehow put mass at low density regions, which does not hurt it's coverage but inflates the length.

Full Conformal Prediction

For efficiency reasons we don't want to split the data.

- Fix any $x \in \mathcal{X}$.
- Suppose we want to find out whether an arbitrary $y \in \mathbb{R}$ should be in the prediction set $\hat{C}_n(x)$.
- Suppose we train our prediction algorithm on an augmented training set : (X1, Y1), (X2, Y2), ..., (Xn, Yn), (x, y) and obtain a point predictor f̂n,(x,y).
 Define

$$R_{i}^{(x,y)} = \begin{cases} \left| Y_{i} - \hat{f}_{n,(x,y)}(X_{i}) \right|, & i \in [n] \\ y - \hat{f}_{n,(x,y)}(x) \right|, & i = n+1 \end{cases}$$

The full conformal set is defined as

.

$$\hat{C}_n = \{y : R_{n+1}^{(x,y)} \leq \lceil (1-\alpha)(n+1) \rceil \text{ smallest of } R_i^{(x,y)} \text{ for } i \in [n] \}$$

- ► The subtle point is that we can get the guarantee of $\mathbb{P}\{Y_{n+1} \in \hat{C}_n(X_{n+1}\} \ge 1 \alpha \text{ once we plug in } (x, y) = (X_{n+1}, Y_{n+1}), \text{ in which case all the residuals are exchangeable.}$
- ▶ This is true only if $\hat{f}_{n,(x,y)}$ does not use the knowledge of the order of the training data.

Full Conformal Prediction

Algorithm 1 Conformal Prediction

Input: Data (X_i, Y_i) , i = 1, ..., n, miscoverage level $\alpha \in (0, 1)$, regression algorithm \mathcal{A} , points $\mathcal{X}_{new} = \{X_{n+1}, X_{n+2}, \ldots\}$ at which to construct prediction intervals, and values $\mathcal{Y}_{\text{trial}} = \{y_1, y_2, \ldots\}$ to act as trial values **Output:** Predictions intervals, at each element of \mathcal{X}_{new} for $x \in \mathcal{X}_{\text{new}}$ do for $y \in \mathcal{Y}_{\text{trial}}$ do $\widehat{\mu}_{u} = \mathcal{A}(\{(X_{1}, Y_{1}), \dots, (X_{n}, Y_{n}), (x, y)\})$ $R_{u,i} = |Y_i - \hat{\mu}_u(X_i)|, i = 1, \dots, n, \text{ and } R_{u,n+1} = |y - \hat{\mu}_u(x)|$ $\pi(y) = (1 + \sum_{i=1}^{n} \mathbb{1}\{R_{u,i} < R_{u,n+1})\}/(n+1)$ end for $C_{\text{conf}}(x) = \{ y \in \mathcal{Y}_{\text{trial}} : (n+1)\pi(y) < \lceil (1-\alpha)(n+1) \rceil \}$ end for Return $C_{\text{conf}}(x)$, for each $x \in \mathcal{X}_{\text{new}}$

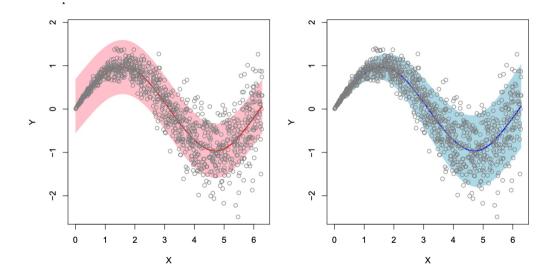
Remarks

- ▶ This method is extremely computationally intensive for every x, we need to refit $\hat{f}_{n,(x,y)}$ for all $y \in \mathbb{R}$. This is infinitely expensive.
- Can work practically for prediction algorithms which have a fast way to refit the point predictor.
- Some methods are proposed that lie between split and full conformal prediction. (Barber et.al, 2021).

Adaptive size of prediction set: Studentized Residuals

Consider split prediction. On \mathcal{I}_1 , we fit both, a point predictor \hat{f}_{n_1} and a variance predictor, $\hat{\sigma}_{n_1}$ which fits the standard deviation of the residual, $|Y - \hat{f}_{n_1}(X)|$.

• We compute normalized residuals on \mathcal{I}_2 . $R_i = \frac{|Y_i - \hat{f}_{n_1}(X_i)|}{\hat{\sigma}_{n_1}(X_i)}$.



- * ロ * * 個 * * 三 * * 三 * ・ 1 * ・ * の < や

Extensions and trends

- Designing conformal methods which have good practical performance small set sizes or balanced coverage across regions in feature space.
- Distribution shift: test point has a different distribution from the calibration.
- Beyond the exchangeability assumption.
- Full conformal prediction to asymmetric algorithms.
- Prediction sets that preserve the privacy of the data.
- Conformal Predictive distribution which outputs a probability distribution over the space *Y*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

And many more . . .

Resources

- Distribution-Free Predictive Inference For Regression, by Lei, Wasserman et. al. 2017.
- A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification by Angelopoulos & Bates, 2022.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ▶ Distribution Free Prediction Bands, by Lei and Wasserman, 2014.
- Conformal prediction beyond exchangeability, by Candes, 2022.