
Generating Functions – An Introduction

Aarshvi Gajjar

1 / 16



Motivation

▶ Bridge between discrete mathematics and analysis. How can the continuous way
be helpful to understand discrete problems.

▶ Powerful tools for enumeration problems – counting the number of objects of size
n satisfying a condition. e.g. How many binary sequences are there of length n?

▶ In some cases, they can provide shorter proofs for questions.

▶ At a first glace, especially in some problems that we will see, it might seem that
this approach is tedious, however note that the purpose of this lecture is to only
introduce the concept and this topic goes much deeper in the form of Analytic
Combinatorics.

▶ These tools can be applied to a large number of problems in discrete mathematics
including permutations, trees, graphs, etc.

2 / 16



Preliminaries

▶ A combinatorial class, A is a countable set, on which a size function is defined
satisfying the following conditions:

1. size of any element is a non negative integer.
2. the number of elements of any given size is finite.

▶ A counting sequence for A is a sequence of integers (An)n≥0 where each An is
the number of objects in A of size n.

▶ Example. For A = {ε, 0, 1, 00, 01, 10, 11, 100, 101, 110, 111, . . .}. If size is length
of the binary string then, the counting sequence is (2n)n≥0.

▶ Example. Permutations: A permutation of size n is a bijective mapping on
{1, 2, . . . , n}. The combinatorial class here is the set of all permutations over
n ≥ 0, i.e.

A = {. . . , 1, 12, 21, 123, 132, 213, 231, 312, 321, 1234, 1243, . . .}

The counting sequence here is (n!)n≥0
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Ordinary Generating Function

Definition
The ordinary generating function of a sequence (an)n≥0 is given by the formal power
series A(z) = ∑n≥0 Anzn.

▶ Note that formal power series is not the same as a power series, we ignore
questions of convergence.

▶ z does not hold any numerical value and arithmetic operations are carried out by
pretending that they are polynomials.

▶ Two fundamental operations like addition and multiplication hold here, through
which the result 1

1−z = 1 + z + z2 + . . . holds.
▶ For a combinatorial class, A, the ogf ∑n≥0 Anzn is the generating function of the

counting sequence.

▶ Example: if A is power set of {1, 2, . . . k}. Then we know that the number of
subsets of size n ≤ k is (k

n). The corresponding generating function will be

A(z) = ∑n
k=0 (

k
n)z

k = (1 + z)k.
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Basic Properties

▶ Disjoint Union: If A are B are two disjoint combinatorial classes then if
C = A∪ B, then the generating function of the counting sequence of C is given
by C(x) = A(x) + B(x) = ∑n≥0(An + Bn)xn.

▶ Cartesian Product: If C = A×B, i.e. set of all (a, b) with a ∈ A and b ∈ B,
then C(x) = A(x) · B(x), or Cn = ∑n

i=0 aibn−i.

Example. How many ways can one obtain the sum n from two 6 faced die?

▶ Without the knowledge of ogfs, we can have n = 7, using 16, 25, 34, 61, 52, 43,
which is essentially the same as ∑i≥0 aia7−i, where ai is the number of ways of
obtaining the number i.

▶ Now, from the method of ogfs, we write C as A×A, where A is the set
{1, 2, 3, 4, 5, 6}, and the corresponding generating function is
x + x2 + x3 + x4 + x5 + x6, where An is the number of times n is in A. Here, the
generating function is (∑6

i=1 xi)2, and simply the coefficient of xn will give us the
answer.
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Coin change problem

Problem
Given a 5 pennies (1 cent),2 nickels (5 cents) and 2 dimes (10 cents), how many ways
can we make an exact change of n cents?

▶ We have seen this in the form of dynamic programming, where
An,coini = An−1 + An−coini .

▶ The generating function for this problem becomes

G(x) = (1 + x + x2 + . . . x5) · (1 + x5 + x10) · (1 + x10 + x20)

▶ Of course, this is also not easy to calculate without Wolfram.

▶ What if we are allowed an unlimited number of pennies, nickels and dimes?
G(x) = 1

(1−x) ·
1

(1−x5)
· 1
(1−x10)

.
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Triangulation

Problem
Given a k sided polygon, how many ways are there of putting chords to divide it into
triangles?

We take T1 = T2 = 1. We can see that T3 = 1, T4 = 2, T5 = 5, . . .

7 / 16



Triangulation

▶ The recurrence relation is given as

Tk−2 =
n−2

∑
j=2

Tj−2Tk−j−1 OR Tk =
k−1

∑
j=0

TjTk−j−1

▶ This is well known . . .
▶ We can use gfs to get the exact formulation.

▶ Expanding from the sequence, we can obtain that T(x) = 1 + x · T2(x).
▶ Another way to see this is T = {ε}+ (T × ∆ × T ).
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Triangulation

▶ From a simple quadratic formula, we obtain T(x) = 1±
√

1−4x
2x . To obtain

T(0) = 1, we only take the − term.

▶ We still need coefficients of xn.

▶ A tedious process follows where we expand (1 − 4x)1/2 using some weird formal
power series properties like

(1 − 4x)1/2 = 1 −
( 1

2
1

)
y +

( 1
2
2

)
y2 + . . .

▶ After some normal algebra, we obtain Tn = 1
n+1 (

2n
n )xn which is the Catalan

Number!
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Exponential Generating Function

Definition
An exponential generating function (egf) of a sequence (An) is the formal power series
A(z) = ∑n≥0 An

zn

n! .

▶ These functions are useful for the case where elements are distinguishable from
one another, like in graphs, trees, permutations.

▶ Example: The class of all permutations that we saw is a prototypical labelled
class. The egf of this combinatorial class is P(z) = ∑n≥0 n! zn

n! =
1

1−z .

▶ Example: The class of cyclic permutations.

C(z) = ∑n≥0(n − 1)! zn

n! = ∑n≥0
zn

n = log( 1
1−z ).

▶ Observation: P(z) = eC(z).
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Permutations

Theorem
Any permutation can be described in terms of a disjoint collection of cycles.

▶ Suppose on the set {1, 2, 3, 4, 5, 6},
π(1) = 2, π(2) = 5, π(3) = 6, π(4) = 4, π(5) = 1, π(6) = 3.

▶ The permutation can be described by 1 → 2 → 5 → 1, 3 → 6 → 3 and 4 → 4.
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Permutations

Theorem
Any permutation can be described in terms of a disjoint collection of cycles.

▶ To enumerate all permutations, we consider a all partitions of the set, S, and for
each partition we consider a cycle.

▶ First, what is the number of permutations of a size of size n with exactly k cycles?

▶ Ans. C(x)k

k! .

▶ For k = 2, the number of ways of partitioning S into two cycles is

qn = ∑
T⊂S

C|T| · Cn−|T| =
n

∑
t=0

(
n
t

)
CtCn−t

, where Cn is the counting sequence of a cycle.
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Permutations

▶ Writing the egf, will give us

Q(x) = ∑
n≥0

qn

n!
· xn = ∑

n≥0

1
n!

·
(

n

∑
t=0

n!
t!(n − t)!

ctcn−t

)
xn

=
∞

∑
t=0

∞

∑
n=t

ctxt

t!
· cn−txn−t

t!

= C(x) · C(x)

▶ We have counted each permutation twice, hence our answer is C(x)·C(x)
2! .
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Permutations

▶ Similarly we can show that for k cycles, the egf is C(x)k and the coefficient of n is

qn = ∑
n1,n2,...nk ,∑i ni=n

cn1

n1!
. . .

cnk

nk!
=

1
n! ∑

n1,n2,...nk ,∑i ni=n

(
n

n1 n2 . . . nk

)
cn1 . . . cnk

▶ The proof of P(x) = eC(x) can be seen by taking partitions of all sizes
k = 1, 2, . . . , n and applying a Taylor Series (which is valid for formal power
series).

P(x) =
n

∑
k=1

1
k!

· (C(x))k = eC(x).
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An incomplete list of problems solvable with gfs

▶ Fibonacci recurrence

▶ Quicksort recurrence

▶ Birthday Paradox

▶ Coupon collector

▶ Diagonal sum of pascal’s triangle

▶ Deragements.
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