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Introduction

Random Matrix
Let X be a random matrix of size d x d. There are two different ways to think of a
random matrix:

1. A matrix sampled according to a distribution on matrices

2. An array of scalar random variables

Matrix Chernoff Bound

» In words, matrix Chernoff bound says that the eigenvalues of a sum of
independent, random, positive-semidefinite matrices have a uniform upper bound.

» An ideal tool for studying random submatrices.

Example
Subspace Embedding based on Leverage Score sampling.



Difficulties in Generalising to Matrices

> How are functions like exp, log extended to matrices?
» Multiplication is not commutative in matrices

» Proof of scalar Chernoff relies on the convexity of ¢*. How is convexity defined in
the matrix world?

> ...



The scalar and matrix versions

Theorem (Scalar Chernoff)

Let X1,..., Xy be independent real valued random variables with 0 < X; < R. Let
Hmin < Zle E[X;] < ptmax. Then, for all § > 0,
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Theorem (Matrix Chernoff: Tropp, 2011)

Let X1, ..., X}, be independent, random, symmetric, real matrices in R4*? with
0=<X; < R-T and pimmin - I < S°F | E[X;] < ptmmax - I. Then, for all § € [0,1],
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Prerequisites from Matrix Analysis |

Definition (Spectral Mapping)
We extend f : R — R to a symmetric matrix, X by applying it to the eigenvalues of
X. ie. if X = UXUT, then f(X) = Uf(2)U7T, where f(2)iu = f(Zu)

> We also define the notion of monotonicity and concavity to spectral mapping.
Definition
f:R—=>Ris:
1. Operator Monotone if X <Y implies that f(X) < f(Y)
+

2. Operator Concave if f(aX + (1 —a)Y)) = af(X) + (1 — «a) f(Y) for all
a € [0,1]. Example: log, see Carlen, 2009.

Counter Example

f is monotone # f is operator monotone! f(x) = e*



Prerequisites from Matrix Analysis |l

» We define an operator, ® which is a commutative version of matrix multiplication.

Definition

If X and Y are positive definite, then we define X ©Y = exp(log(X) + log(Y))
» Unlike matrix multiplication, this operation preserves positive definiteness.
> Note: If X and Y commute, then X ® Y is the usual multiplication XY.
» To learn more, refer to Warmuth & Kuzmin, 2009.

We are ready to prove the theorem!



An intermediate result

Claim
k
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Proof.
> Anax is a scalar and hence monotonicity and Markov's can be applied.
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Proof continues..

Proof.
» Note that A\pax(eY) = eAmax(Y)
» And Apax(Y) < tr(Y)
> = e (D 0X0) < tr(exp(SE 0X))
> Taking Expectation and from the definition of ®,

k
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=E[tr(A1) ©tr(Ag)... © tr(Ag)]

» To take the expectation inside, we first use the result from Lieb which states that
the map X — tr(X ®Y)) is concave followed by Jensen's Inequality and induction.

O



» We have currently shown:
k
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» We want to show:
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The main proof

Proof.

» Continuing from the above claim, we have the following term in R.H.S.
tr(E[e’*1 @ E[eX2]... @ E[e"**])

» Next, we expand on the definition of ® and multiply and divide by k.

log(E[e"1])))

Indle
S

tr(E[e?X © E[e?*2] ... @ E[e"X*+]) = tr(exp(k

=1

» It has been shown before that the log is operator concave. Therefore,
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Proof Continues..

Proof.

> Fact: exp is not operator monotone but the composition trexp is operator
monotone. See Bhatia, 1997.

» From (1), 1 and tr(Y) < d- Apax(Y),
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» The last equality holds because spectral mapping is only applied to eigenvalues.



Proof continues on..

Proof.
» Fact: It can be shown that e?X is operator convex.
> — if 0 <X <1 then E[e?((1-X)0+XD] < 14 (0 — 1) E[X].
» Thus, the chain of inequalities follow:
1 "
d-exp(k log()\max(; %E[eexi]))) < d - exp(k1og Amax(I + (exp(6) — 1) ; SEX])
e —1 b
=d - exp(klog(1 + Amax(Y_E[X4]))
i=1
< d-exp(klog(e’ — 1 pimax))
» Placing t = (14 d)ptmax and 6 = In(1 + §) completes the proof.
> Q.E.D.
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