# Matrix Chernoff Bound 

Aarshvi Gajjar

NYU Tandon

## Introduction

## Random Matrix

Let $\mathbf{X}$ be a random matrix of size $d \times d$. There are two different ways to think of a random matrix:

1. A matrix sampled according to a distribution on matrices
2. An array of scalar random variables

## Matrix Chernoff Bound

- In words, matrix Chernoff bound says that the eigenvalues of a sum of independent, random, positive-semidefinite matrices have a uniform upper bound.
- An ideal tool for studying random submatrices.


## Example

Subspace Embedding based on Leverage Score sampling.

## Difficulties in Generalising to Matrices

- How are functions like exp, log extended to matrices?
- Multiplication is not commutative in matrices
- Proof of scalar Chernoff relies on the convexity of $e^{x}$. How is convexity defined in the matrix world?


## The scalar and matrix versions

Theorem (Scalar Chernoff)
Let $X_{1}, \ldots, X_{k}$ be independent real valued random variables with $0 \leq X_{i} \leq R$. Let $\mu_{\text {min }} \leq \sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right] \leq \mu_{\text {max }}$. Then, for all $\delta \geq 0$,

$$
\operatorname{Pr}\left\{\sum_{i=1}^{k} X_{i} \geq(1+\delta) \mu_{\max }\right\} \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_{\max } / R} \leq e^{-\frac{\delta^{2} \mu_{\max }}{2+\delta}}
$$

## Theorem (Matrix Chernoff: Tropp, 2011)

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{k}$ be independent, random, symmetric, real matrices in $\mathbb{R}^{d \times d}$ with $0 \preceq \mathbf{X}_{i} \preceq R \cdot I$ and $\mu_{\min } \cdot I \preceq \sum_{i=1}^{k} \mathbb{E}\left[\mathbf{X}_{i}\right] \preceq \mu_{\max } \cdot I$. Then, for all $\delta \in[0,1]$,

$$
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right) \geq(1+\delta) \mu_{\max }\right\} \leq d \cdot\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_{\max } / R}
$$

## Prerequisites from Matrix Analysis I

## Definition (Spectral Mapping)

We extend $f: \mathbb{R} \rightarrow \mathbb{R}$ to a symmetric matrix, $\mathbf{X}$ by applying it to the eigenvalues of X. i.e. if $\mathbf{X}=\mathbf{U} \Sigma \mathbf{U}^{T}$, then $f(\mathbf{X})=\mathbf{U} f(\Sigma) \mathbf{U}^{T}$, where $f(\Sigma)_{i i}=f\left(\Sigma_{i i}\right)$

- We also define the notion of monotonicity and concavity to spectral mapping.


## Definition

$f: \mathbb{R} \rightarrow \mathbb{R}$ is:

1. Operator Monotone if $\mathbf{X} \preceq \mathbf{Y}$ implies that $f(\mathbf{X}) \preceq f(\mathbf{Y})$
2. Operator Concave if $f(\alpha \mathbf{X}+(1-\alpha) \mathbf{Y})) \succeq \alpha f(\mathbf{X})+(1-\alpha) f(\mathbf{Y})$ for all $\alpha \in[0,1]$. Example: log, see Carlen, 2009.

Counter Example
$f$ is monotone $\nRightarrow f$ is operator monotone! $f(x)=e^{x}$

## Prerequisites from Matrix Analysis II

- We define an operator, $\odot$ which is a commutative version of matrix multiplication.


## Definition

If $\mathbf{X}$ and $\mathbf{Y}$ are positive definite, then we define $\mathbf{X} \odot \mathbf{Y}=\exp (\log (\mathbf{X})+\log (\mathbf{Y}))$

- Unlike matrix multiplication, this operation preserves positive definiteness.
- Note: If $\mathbf{X}$ and $\mathbf{Y}$ commute, then $\mathbf{X} \odot \mathbf{Y}$ is the usual multiplication $\mathbf{X Y}$.
- To learn more, refer to Warmuth \& Kuzmin, 2009.

We are ready to prove the theorem!

## An intermediate result

Claim

$$
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right) \geq t\right\} \leq \inf _{\theta>0} e^{-\theta t} \cdot \operatorname{tr}\left(\mathbb{E}\left[e^{\theta \mathbf{X}_{1}}\right] \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{2}}\right] \odot \ldots \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{k}}\right]\right)
$$

## Proof.

- $\lambda_{\max }$ is a scalar and hence monotonicity and Markov's can be applied.

$$
\begin{aligned}
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right) \geq t\right\} & =\operatorname{Pr}\left\{e^{\lambda_{\max }\left(\sum_{i=1}^{k} \theta \mathbf{X}_{i}\right)} \geq e^{\theta t}\right\}, \quad \theta \geq 0 \\
& \leq e^{-\theta t} \cdot \mathbb{E}\left[e^{\lambda_{\max }\left(\sum_{i=1}^{k} \theta \mathbf{X}_{i}\right)}\right]
\end{aligned}
$$

## Proof continues..

## Proof.

- Note that $\lambda_{\text {max }}\left(e^{\mathbf{Y}}\right)=e^{\lambda_{\text {max }}(\mathbf{Y})}$
- And $\lambda_{\max }(\mathbf{Y}) \leq \operatorname{tr}(\mathbf{Y})$
- $\Longrightarrow \exp \left(\lambda_{\max }\left(\sum_{i=1}^{k} \theta \mathbf{X}_{i}\right)\right) \leq \operatorname{tr}\left(\exp \left(\sum_{i=1}^{k} \theta \mathbf{X}_{i}\right)\right)$
- Taking Expectation and from the definition of $\odot$,

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{tr}\left(\exp \left(\sum_{i=1}^{k} \theta \mathbf{X}_{i}\right)\right)\right] & =\mathbb{E}\left[\operatorname{tr}\left(\exp \left(\sum_{i=1}^{k} \log \left(A_{i}\right)\right)\right)\right], \quad \mathbf{A}_{i}=\exp \left(\theta \mathbf{X}_{i}\right) \\
& =\mathbb{E}\left[\operatorname{tr}\left(\mathbf{A}_{1}\right) \odot \operatorname{tr}\left(\mathbf{A}_{2}\right) \ldots \odot \operatorname{tr}\left(\mathbf{A}_{k}\right)\right]
\end{aligned}
$$

- To take the expectation inside, we first use the result from Lieb which states that the map $\mathbf{X} \rightarrow \operatorname{tr}(\mathbf{X} \odot \mathbf{Y})$ is concave followed by Jensen's Inequality and induction.
- We have currently shown:

$$
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right) \geq t\right\} \leq \inf _{\theta>0} e^{-\theta t} \cdot \operatorname{tr}\left(\mathbb{E}\left[e^{\theta \mathbf{X}_{1}}\right] \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{2}}\right] \odot \ldots \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{k}}\right]\right)
$$

- We want to show:

$$
\operatorname{Pr}\left\{\lambda_{\max }\left(\sum_{i=1}^{k} \mathbf{X}_{i}\right) \geq(1+\delta) \mu_{\max }\right\} \leq d \cdot\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_{\max } / R}
$$

## The main proof

## Proof.

- Continuing from the above claim, we have the following term in R.H.S.

$$
\operatorname{tr}\left(\mathbb{E}\left[e^{\theta \mathbf{X}_{1}} \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{2}}\right] \ldots \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{k}}\right]\right)\right.
$$

- Next, we expand on the definition of $\odot$ and multiply and divide by $k$.

$$
\operatorname{tr}\left(\mathbb{E}\left[e^{\theta \mathbf{X}_{1}} \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{2}}\right] \ldots \odot \mathbb{E}\left[e^{\theta \mathbf{X}_{k}}\right]\right)=\operatorname{tr}\left(\exp \left(k \sum_{i=1}^{k} \frac{1}{k} \cdot \log \left(\mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right)\right)\right)\right.
$$

- It has been shown before that the log is operator concave. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{k} \log \left(\mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right) \preceq \log \left(\sum_{i=1}^{k} \frac{1}{k} \mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right) \tag{1}
\end{equation*}
$$

## Proof Continues..

## Proof.

- Fact: exp is not operator monotone but the composition tr exp is operator monotone. See Bhatia, 1997.
- From (1), $\uparrow$ and $\operatorname{tr}(\mathbf{Y}) \leq d \cdot \lambda_{\max }(\mathbf{Y})$,

$$
\begin{aligned}
\operatorname{tr}\left(\exp \left(k \sum_{i=1}^{k} \frac{1}{k} \cdot \log \left(\mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right)\right)\right) & \leq d \cdot \lambda_{\max }\left(\exp \left(k \log \left(\sum_{i=1}^{k} \frac{1}{k} \mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right)\right)\right) \\
& =d \cdot \exp \left(k \log \left(\lambda_{\max }\left(\sum_{i=1}^{k} \frac{1}{k} \mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right)\right)\right)
\end{aligned}
$$

- The last equality holds because spectral mapping is only applied to eigenvalues.


## Proof continues on..

## Proof.

- Fact: It can be shown that $e^{\theta \mathbf{X}}$ is operator convex.
- $\Longrightarrow$ if $0 \preceq \mathbf{X} \preceq 1$ then $\mathbb{E}\left[e^{\theta \cdot((1-\mathbf{X}) \cdot 0+\mathbf{X} \cdot 1)}\right] \preceq I+\left(e^{\theta}-1\right) \cdot \mathbb{E}[\mathbf{X}]$.
- Thus, the chain of inequalities follow:

$$
\begin{aligned}
d \cdot \exp \left(k \log \left(\lambda_{\max }\left(\sum_{i=1}^{k} \frac{1}{k} \mathbb{E}\left[e^{\theta \mathbf{X}_{i}}\right]\right)\right)\right) & \leq d \cdot \exp \left(k \log \lambda_{\max }\left(I+(\exp (\theta)-1) \sum_{i=1}^{k} \frac{1}{k} \mathbb{E}\left[\mathbf{X}_{i}\right]\right)\right. \\
& =d \cdot \exp \left(k \log \left(1+\frac{e^{\theta}-1}{k} \lambda_{\max }\left(\sum_{i=1}^{k} \mathbb{E}\left[\mathbf{X}_{i}\right]\right)\right)\right. \\
& \leq d \cdot \exp \left(k \log \left(e^{\theta}-1 \cdot \mu_{\max }\right)\right)
\end{aligned}
$$

- Placing $t=(1+\delta) \mu_{\max }$ and $\theta=\ln (1+\delta)$ completes the proof.
- Q.E.D.


## References

- Lecture notes by Nick Harvey
- An Introduction to Matrix Concentration Inequalities, Joel Tropp
- Sketching as a Tool for NLA, David Woodruff
- Matrix Analysis, R. Bhatia, Springer 1997
- Bayesian generalized probability calculus for density, M. K. Warmuth and D. Kuzmin, 2010
- Trace inequalities and quantum entropy: An introductor, E. Carlen, 2009

