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Introduction

Random Matrix
Let X be a random matrix of size d× d. There are two different ways to think of a
random matrix:

1. A matrix sampled according to a distribution on matrices

2. An array of scalar random variables

Matrix Chernoff Bound
▶ In words, matrix Chernoff bound says that the eigenvalues of a sum of

independent, random, positive-semidefinite matrices have a uniform upper bound.

▶ An ideal tool for studying random submatrices.

Example

Subspace Embedding based on Leverage Score sampling.



Difficulties in Generalising to Matrices

▶ How are functions like exp, log extended to matrices?

▶ Multiplication is not commutative in matrices

▶ Proof of scalar Chernoff relies on the convexity of ex. How is convexity defined in
the matrix world?

▶ . . .



The scalar and matrix versions

Theorem (Scalar Chernoff)

Let X1, . . . , Xk be independent real valued random variables with 0 ≤ Xi ≤ R. Let
µmin ≤

∑k
i=1 E[Xi] ≤ µmax. Then, for all δ ≥ 0,

Pr


k∑

i=1

Xi ≥ (1 + δ)µmax

 ≤

(
eδ

(1 + δ)1+δ

)µmax/R

≤ e−
δ2µmax

2+δ

Theorem (Matrix Chernoff: Tropp, 2011)

Let X1, . . . ,Xk be independent, random, symmetric, real matrices in Rd×d with
0 ⪯ Xi ⪯ R · I and µmin · I ⪯

∑k
i=1 E[Xi] ⪯ µmax · I. Then, for all δ ∈ [0, 1],

Pr

λmax(

k∑
i=1

Xi) ≥ (1 + δ)µmax

 ≤ d ·

(
eδ

(1 + δ)1+δ

)µmax/R



Prerequisites from Matrix Analysis I

Definition (Spectral Mapping)

We extend f : R → R to a symmetric matrix, X by applying it to the eigenvalues of
X. i.e. if X = UΣUT , then f(X) = Uf(Σ)UT , where f(Σ)ii = f(Σii)

▶ We also define the notion of monotonicity and concavity to spectral mapping.

Definition
f : R → R is:

1. Operator Monotone if X ⪯ Y implies that f(X) ⪯ f(Y)

2. Operator Concave if f(αX+ (1− α)Y)) ⪰ αf(X) + (1− α)f(Y) for all
α ∈ [0, 1]. Example: log, see Carlen, 2009.

Counter Example

f is monotone ⇏ f is operator monotone! f(x) = ex



Prerequisites from Matrix Analysis II

▶ We define an operator, ⊙ which is a commutative version of matrix multiplication.

Definition
If X and Y are positive definite, then we define X⊙Y = exp(log(X) + log(Y))

▶ Unlike matrix multiplication, this operation preserves positive definiteness.

▶ Note: If X and Y commute, then X⊙Y is the usual multiplication XY.

▶ To learn more, refer to Warmuth & Kuzmin, 2009.

We are ready to prove the theorem!



An intermediate result

Claim

Pr{λmax(

k∑
i=1

Xi) ≥ t} ≤ inf
θ>0

e−θt · tr
(
E[eθX1 ]⊙ E[eθX2 ]⊙ . . .⊙ E[eθXk ]

)

Proof.
▶ λmax is a scalar and hence monotonicity and Markov’s can be applied.

Pr{λmax(

k∑
i=1

Xi) ≥ t} = Pr{eλmax(
∑k

i=1 θXi) ≥ eθt}, θ ≥ 0

≤ e−θt · E[eλmax(
∑k

i=1 θXi)]



Proof continues..

Proof.
▶ Note that λmax(e

Y) = eλmax(Y)

▶ And λmax(Y) ≤ tr(Y)

▶ =⇒ exp(λmax(
∑k

i=1 θXi)) ≤ tr(exp(
∑k

i=1 θXi))

▶ Taking Expectation and from the definition of ⊙,

E[tr(exp(
k∑

i=1

θXi))] = E[tr(exp(
k∑

i=1

log(Ai)))], Ai = exp(θXi)

= E[tr(A1)⊙ tr(A2) . . .⊙ tr(Ak)]

▶ To take the expectation inside, we first use the result from Lieb which states that
the map X → tr(X⊙Y) is concave followed by Jensen’s Inequality and induction.



▶ We have currently shown:

Pr{λmax(

k∑
i=1

Xi) ≥ t} ≤ inf
θ>0

e−θt · tr
(
E[eθX1 ]⊙ E[eθX2 ]⊙ . . .⊙ E[eθXk ]

)
▶ We want to show:

Pr

λmax(

k∑
i=1

Xi) ≥ (1 + δ)µmax

 ≤ d ·

(
eδ

(1 + δ)1+δ

)µmax/R



The main proof

Proof.
▶ Continuing from the above claim, we have the following term in R.H.S.

tr(E[eθX1 ⊙ E[eθX2 ] . . .⊙ E[eθXk ])

▶ Next, we expand on the definition of ⊙ and multiply and divide by k.

tr(E[eθX1 ⊙ E[eθX2 ] . . .⊙ E[eθXk ]) = tr(exp(k
k∑

i=1

1

k
· log(E[eθXi ])))

▶ It has been shown before that the log is operator concave. Therefore,

k∑
i=1

1

k
log(E[eθXi ]) ⪯ log(

k∑
i=1

1

k
E[eθXi ]) (1)



Proof Continues..

Proof.
▶ Fact: exp is not operator monotone but the composition tr exp is operator

monotone. See Bhatia, 1997.

▶ From (1), ↑ and tr(Y) ≤ d · λmax(Y),

tr(exp(k
k∑

i=1

1

k
· log(E[eθXi ]))) ≤ d · λmax(exp(k log(

k∑
i=1

1

k
E[eθXi ])))

= d · exp(k log(λmax(

k∑
i=1

1

k
E[eθXi ])))

▶ The last equality holds because spectral mapping is only applied to eigenvalues.



Proof continues on..

Proof.
▶ Fact: It can be shown that eθX is operator convex.

▶ =⇒ if 0 ⪯ X ⪯ 1 then E[eθ·((1−X)·0+X·1)] ⪯ I + (eθ − 1) · E[X].

▶ Thus, the chain of inequalities follow:

d · exp(k log(λmax(

k∑
i=1

1

k
E[eθXi ]))) ≤ d · exp(k log λmax(I + (exp(θ)− 1)

k∑
i=1

1

k
E[Xi])

= d · exp(k log(1 + eθ − 1

k
λmax(

k∑
i=1

E[Xi]))

≤ d · exp(k log(eθ − 1 · µmax))

▶ Placing t = (1 + δ)µmax and θ = ln(1 + δ) completes the proof.

▶ Q.E.D.
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