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Abstract

We study active learning for single index models of the form F (x) = f(⟨w,x⟩), where
f : R → R and x,w ∈ Rd. Such functions are important in scientific computing, where
they are used to construct surrogate models for partial differential equations (PDEs) and
to approximate high-dimensional Quantities of Interest. In these applications, collecting
function samples requires solving a partial differential equation, so sample-efficient active
learning methods translate to reduced computational cost. Our work provides two main
results. First, when f is known and Lipschitz, we show that Õ(d) samples collected via
statistical leverage score sampling are sufficient to find an optimal single index model for
a given target function, even in the challenging and practically important agnostic (ad-
versarial noise) setting. This result is optimal up to logarithmic factors and improves
quadratically on a recent Õ(d2) bound of Gajjar et al. (2023). Second, we show that
Õ(d3/2) samples suffice in the more difficult non-parametric setting when f is unknown,
which is the also best result known in this general setting.

Keywords: active learning, leverage scores, single index models, scientific computing

1. Introduction

Single Index Models (SIMs) play an important role in many estimation problems and have
been extensively studied in statistics (Hristache et al., 2001; Härdle et al., 2004; Dalalyan
et al., 2008). Moreover, they serve as foundational elements within neural networks (Kakade
et al., 2011; Mei et al., 2018; Abbe et al., 2022). A single index model, F : Rd → R can
be written as F (x) = f(⟨w,x⟩), with a univariate link function f : R → R and a weight
vector w ∈ Rd. In the general form, both w and f are unknown, presenting a challenging
non-parametric estimation problem. We aim to address this problem using minimal samples
within the active learning setting, where we can query the values of F at selected points
from a predefined set.

Active learning is crucial in many scientific computing applications, due to repeated
evaluation of computationally expensive functions. For instance, in parametric PDEs, this
demand stems from solving individual PDEs associated with a large number of parameters.
For these problems, several recent studies, including Geist et al. (2021), Bhattacharya et al.
(2021), and Kutyniok et al. (2022), have focused on approximating parameter-to-solution
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maps using neural networks. Similarly, there are studies on approximating specific quantities
of interest within solution maps in works such as Tripathy and Bilionis (2018), Khoo et al.
(2021), Zhang et al. (2019), O’Leary-Roseberry et al. (2022). We study single index models
as a simplified representation of neural networks and present a provably sample-efficient
active learning method for them.

The problem of learning single index models has been extensively studied without the
active learning setting, (Bietti et al., 2022; Abbe et al., 2022; Dudeja and Hsu, 2018; Damian
et al., 2022). These studies focus on analysing computationally feasible algorithms like gra-
dient descent and establishing sample complexity bounds. Since their tasks are intertwined
with studying these algorithms, they also rely on stronger assumptions that our setting,
such as Gaussian data or smoothness assumptions on the link function, in addition to Lip-
schitzness. Our work relies on no distributional assumptions, once the large data matrix
has been obtained.

In the active learning setting, alternative learning algorithms have been proposed, as
seen in (Cohen et al., 2011; Fornasier et al., 2012; Tyagi and Cevher, 2012). However, it’s
important to note that these algorithms are designed for the noiseless (realizable) setting
and are not robust to noise.

Our work is a continuation of this line of research on active learning algorithms where
we focus on achieving the best sample complexity from a statistical perspective, decoupled
from the computational perspective. This enables us to achieve better sample complexity
with fewer assumptions, which we will provide detailed explanations in the next section.

1.1 Contribution

We improve upon the previous works by presenting a sampling-efficient method for learning
SIMs. Our method has the advantages of 1) no assumptions of smoothness on f beyond
Lipschitz continuity, 2) agnostic capability, i.e. robustness against any adversarial noise. 3)
optimal or state-of-the-art sample complexity across different settings.

Formally, the problem we aim at solving is as follows.

Problem 1. Given a data matrix X = [x1,x2, . . . ,xn]
⊤ ∈ Rn×d, query access to the

target vector y = (y1, . . . , yn) ∈ Rn, and a function class F , the goal is to determine
the minimum number of queries needed to approximately solve the least squares objective∑n

j=1

∣∣f(⟨w,xj⟩)− yj
∣∣2 across all possible weight vectors and functions within F .

Our sampling technique is leverage score sampling. This method selects data points
non-uniformly, with probability proportional to their individual statistical leverage scores.
Intuitively, this method favors rows that are more influential in forming the column space
of the data matrix, X.

Definition 2 (Statistical Leverage score). The leverage score of the j-th row xj of a matrix

X ∈ Rn×d is defined as τj(X) := x⊤
j (X

⊤X)−1xj = supw∈Rd
⟨w,xj⟩2

∥Xw∥22
.

This is a well studied sampling strategy, widely applied in active linear regression (Chen
and Price (2019); Mahoney et al. (2011), etc.). Extending the application of this method
to the setting of Problem 1, we show:
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• A sample complexity of Õ(d), when f is known. This is optimal, up to logarithmic
factors.

• A sample complexity of Õ(d3/2), when f remains unknown, which is the best result
known in such generality.

The most closely related result in the literature to our approach is a sample complexity
of Õ(d2), assuming f is known, as recently shown in Gajjar et al. (2023). Our sample
complexity of Õ(d) is a quadratic improvement over this result. Moreover, to the best of our
knowledge, the scenario where f is unknown hasn’t been studied at this level of generality
Previous works (Damian et al., 2022; Bietti et al., 2022) indicate a sample complexity of
O(d2) even with additional assumptions on f .

Organization. In Section 2, we present notations used in this paper. Following this, in
Section 3, we provide a mathematical formulation of our problem, including the underlying
assumptions and our targeted accuracy goal. In Section 3.3, we elaborate on the statistical
leverage score sampling process, along with well-established properties of leverage score
sampling. Lastly, in Section 4, we formally present our results and accompanying proof
techniques. A sketch of proof and explanations can be found in the appendix.

2. Notation

For a natural number n, we let [n] denote the set {1, 2, . . . , n}. For a vector x in Rd, its ℓ2
norm is represented as ∥x∥. We use LipL to represent the class of L-Lipschitz functions on
R, more precisely, LipL = {f ∈ C(R) :

∣∣f(x1)− f(x2)
∣∣ ≤ L|x1 − x2| ,∀x1, x2 ∈ R}.

We extend the notation of f(·) to d dimensional vectors: for x ∈ Rd, denote f(x) ∈ Rd as
the entrywise application of f to x, i.e. f(x) = (f(x1), f(x2), . . . , f(xd)), where xk, k ∈ [d],
is the kth element of x. We denote the ith standard basis vector as ei.

The Euclidean ball of radius R centered at x ∈ Rd is denoted by Bx(R). In the case
where the ball is centered at the origin, we simply use B(R). The notation Õ is the big-O
hiding all logarithmic factors in n and d. Moreover a ≲ b means that there exists a positive
constant C > 0 such that a ≤ Cb. Throughout the paper, c and C will denote positive
universal constants that may vary upon each occurrence.

3. Preliminaries

We want to find a single index model that best fits a given set of data points, (xj , yj) for
j ∈ [n]. Least squares regression is a common approach to achieve this, where the objective
is to minimise the ℓ2 loss, over all link functions f ∈ F and weight vectors w ∈ Rd.

min
f∈F
w∈Rd

L(f,w), where L(f,w) :=
n∑

j=1

∣∣f(⟨w,xj⟩)− yj
∣∣2 = ∥f(Xw)− y∥2. (1)

3.1 Assumption on the function class

Our assumption on F is that it is a subset of the class of L-Lipschitz functions, which we
denote by LipL. In particular, we will study two representative cases: one where the link
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function f is known a priori, i.e., F = {f⋆} for some f⋆ ∈ LipL, and another where we have
no prior knowledge of f , i.e., F = LipL.

In related literature, alternative function classes, such as low degree polynomials, piece-
wise linear functions, or Sobolev spaces are also considered based on specific problem char-
acteristics. We choose LipL, due to its simplicity and ability to express a wide range of
functions: the property of Lipschitz continuity is maintained in many practical scenarios1.

3.2 Accuracy goal

Suppose that (f⋆,w⋆) minimises2 the loss function L over f ∈ F ,w ∈ Rd, then we denote
the optimal loss as OPT(F), defined as

OPT(F) := min
f∈F
w∈Rd

L(f,w) = L(f⋆,w⋆).

We measure the accuracy of an approximate solution to problem (1) by quantifying
the difference between its loss and the optimal loss. Specifically, we define a measure of
accuracy for a given solution pair (f,w) as follows.

Definition 3 (ε-accurate solution). Fix some sufficiently large constant C > 0. Given
some ε > 0, a pair (f,w) with f ∈ F , w ∈ Rd is said to be an ε-accurate solution to the
problem (1), if

L(f,w) ≤ C · OPT(F) + ε∥Xw⋆∥2.

This notion of accuracy was also used in Gajjar et al. (2023). Similar notions also
appeared in the studies of leverage score sampling in other contexts (Avron et al., 2019).

3.3 Subsampled regression

Our sampling method is a sample-with-replacement variant of leverage score sampling. As
discussed above, we assign a probability to each data point based on it’s statistical leverage
score, allowing us to address the regression problem using a small set of samples. This
process is precisely outlined below.

Sampling process. For every j ∈ [n], we assign a probability pj =
τj(X)∑n

j′=1 τj′ (X)
. This

establishes a probability distribution, denoted as p over the set [n], where each index j is
selected with probability pj . We then generate m i.i.d. random indices j1, . . . , jm ∼ p,
representing random variables taking values in [n].

Subsampled least-squares. Similar to Gajjar et al. (2023), we define a sampling-and-
reweighting matrix S to succinctly represent our subsampled regression problem.

Given indices j1, j2, . . . , jm sampled from p, we construct S ∈ Rm×n, by setting the
i-th row of S to be 1√

mpji
eji . The loss for the subsampled problem can be expressed as

1. For QoI estimation in PDE, f is usually assumed sufficiently regular to ensure accurate estimation. In
single neuron model, the most popular choices of f , including sigmoid function, ReLU and its variants,
are all Lipschitz continuous.

2. We assume the existence of a minimiser for simplicity. Our results still hold even if no minimiser exists.
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the weighted average of the individual losses. We denote L̂ as the loss of the subsampled
regression problem and define it in terms of the sampling-and-reweighting matrix as follows.

L̂(f,w) := ∥Sf(Xw)− Sy∥2 = 1

m

m∑
i=1

1

pji

∣∣f(⟨w,xji⟩)− yji
∣∣2 . (2)

Here 1/pji can be viewed as the weight assigned to the sample (xji , yji) in the subsampled
regression problem.

One can verify that E[S⊤S] = I and hence EL̂ = L, justifying that L̂ is an unbiased
estimator of L. Thus it is reasonable to use L̂ as a surrogate of L and try to minimise L̂.
After laying out the subsampled process, the main technical challenge is to quantify how
large m should be to ensure that minimising the subsampled loss L̂ results in an ε-accurate
solution to (1).

4. Main results

As aforementioned, we will show that minimising the subsampled objective (2) will lead to
an ε-approximate solution to (1). Moreover, our result will show that there is no need to
minimise over all w ∈ Rd: we can always find an ε-approximate solution in a smaller region
R, originally introduced by Gajjar et al. (2023), defined as

R :=

{
w ∈ Rd : ∥SXw∥2 ≤ 1

εL2
∥Sy∥2

}
. (3)

4.1 Warm up: The case of fixed f

Assume the link function is fixed, i.e., F = Ffixed := {f⋆} for some f⋆ ∈ LipL.

Theorem 4. Known link function Let ŵfixed be the solution to the subsampled least square
problem in this setting:

ŵfixed := argmin
f∈Ffixed
w∈R

L̂(f,w) = argmin
w∈R

L̂(f⋆,w). (4)

There exists some universal constant C > 0 such that the following holds. As long as
m ≥ CL4ε−4d log3 d, with probability at least 0.99, one has that (f⋆, ŵfixed) is an ε-accurate
solution of (1) .

A few remarks are in order.

Near-optimality. To the best of our knowledge, this is the first result establishing Õ(d)
sample complexity in this setting. The previous state of the art is Gajjar et al. (2023),
where the sample complexity is Õ(d2). It is worth emphasizing that Õ(d) is optimal up
to logarithmic factors: it is clear that in general at least d samples are required to find an
approximate solution, since the weight w ∈ Rd has d degrees of freedom (Chen and Price,
2019).
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Proof technique. The main ingredient is to quantify the idea that ∥Sf(Xw)−Sf(Xw⋆)∥2
is close to ∥f(Xw)− f(Xw⋆)∥2 in terms of a concentration inequality, which in the case of
linear regression follows from matrix Chernoff bound. However, when f is nonlinear, clas-
sical matrix concentration inequalities fail to provide optimal bounds, since the deviation
cannot be expressed as the norm of a random matrix due to the nonlinear coupling between
S, X and w. In order to obtain optimal results like Theorem 4, we resort to more fun-
damental principles in probability theory, building up a nonlinear concentration inequality
using chaining and duality of metric entropy based on the idea of Rudelson (1996).

4.2 The case of unknown f

Now we consider the more general setting that f is an unknown L-Lipschitz function, i.e.,
F = LipL.

Theorem 5. Unknown link function Let f̂ and ŵ be the solution to the subsampled least
square problem:

(f̂ , ŵ) = argmin
f∈LipL
w∈R

L̂(f,w). (5)

There exists some universal constant C > 0 such that the following holds. As long as m ≥
CL6ε−6d3/2 log(n/d), one has that (f̂ , ŵ) is an ε-accurate solution of (1) with probability
at least 0.99.

Proof technique. Even with the nonlinear concentration inequality for a fixed f , han-
dling the case of unknown f remains challenging. This is because the size of LipL is infinite
and necessitates an appropriate complexity measure to control this. It turns out that such
a complexity measure should be based on specific properties of S, differing from common
measures like the VC dimension. Guided by the generic chaining theory for Bernoulli pro-
cesses (Talagrand, 2021), we construct a new metric on LipL, which provide fines control
over the fluctuation of Sf(Xw). We further upper-bound the metric entropy of LipL for
this metric by carefully constructing ε-nets with piecewise linear functions, using properties
of leverage scores.

Unlike the case of known link function, it is not clear whether the Õ(d3/2) sample
complexity in Theorem 5 is optimal, and the only lower bound we know is the same bound
for the case of known link function. Closing the gap between the sample complexity in
Theorem 5 and the lower bound is an interesting direction for future research.

5. Conclusion

We show that leverage score sampling effectively serves as an active learning strategy for
learning SIMs, with optimal or state-of-the-art sample complexity across different settings.
This opens two directions: 1) Finding matching lower bounds for both cases, or 2) Improving
sample complexity bounds for the unknown link function case.

References

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase
property: a necessary and nearly sufficient condition for sgd learning of sparse functions on

6



two-layer neural networks. In Conference on Learning Theory, pages 4782–4887. PMLR,
2022.

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker,
and Amir Zandieh. A universal sampling method for reconstructing signals with simple
fourier transforms. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 1051–1063, 2019.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model
reduction and neural networks for parametric PDEs. The SMAI Journal of Computational
Mathematics, 7:121–157, 2021.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index
models with shallow neural networks. Advances in Neural Information Processing Sys-
tems, 35:9768–9783, 2022.

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference
on Learning Theory, pages 663–695. PMLR, 2019.

Albert Cohen, Ingrid Daubechies, Ronald DeVore, Gerard Kerkyacharian, and Dominique
Picard. Capturing ridge functions in high dimensions from point queries. Constructive
Approximation, 35(2):225–243, December 2011.

Arnak S Dalalyan, Anatoly Juditsky, and Vladimir Spokoiny. A new algorithm for esti-
mating the effective dimension-reduction subspace. The Journal of Machine Learning
Research, 9:1647–1678, 2008.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn rep-
resentations with gradient descent. In Conference on Learning Theory, pages 5413–5452.
PMLR, 2022.

Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In
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Appendix A. Preliminaries

Before delving into the detailed proof, we first simplify the discussion by showing that it
suffices to consider the case where X has orthonormal columns.

Lemma 6 (Reduction to orthonormal data). If Theorem 4 and Theorem 5 hold for any
orthonormal matrix X ∈ Rn×d, then they also hold for any matrix X ∈ Rn×d.

Proof (Sketch) The main point is that leverage score is invariant under column transforma-
tions. If X = QR where Q ∈ Rn×d has orthonormal columns and R ∈ Rd×d is invertible,
denoting by qj the j-th row of Q, one has qj = R⊤xj and may verify

τj(Q) = q⊤j (Q
⊤Q)−1qj = x⊤

j (X
⊤X)xj = τj(X).

The conclusion then follows from observing that all the involved statements are not affected
if we substitute X with Q and w with Rw.

In virtue of Lemma 6, throughout the proof we will always assume without loss of
generality that X has orthonormal columns. With this assumption, it will be convenient
to note that the search region defined in (3) is close to a Euclidean ball.

Lemma 7. The search region R defined in (3) satisfies R ⊂ B(R) with probability ≥ 0.999

if m ≥ Cd log d, where R = Cε−1/2L−1
√

OPT+ L2∥Xw⋆∥2.

The proof will make use of the following classical result, which states that S is an almost
isometric embedding on the column space of X.

Lemma 8 (Subspace embedding, Woodruff (2014)). For any ε ∈ (0, 1), as long as m ≥
Cε−2d log(d/δ), the following holds for all w1,w2 ∈ Rd with probability at least 1− δ.

(1− ε)∥Xw1 −Xw2∥2 ≤ ∥SXw1 − SXw2∥2 ≤ (1 + ε)∥Xw1 −Xw2∥2. (6)

We are now ready to prove Lemma 7.

Proof (Proof of Lemma 7) Throughout the proof we condition on the event that (6) holds.
For any w ∈ R, first note that ∥Xw∥2 = ∥w∥2 since X has orthonormal columns. Now,
applying Lemma 8, we obtain that∥Xw∥2 ≤ 1

2∥SXw∥2 ≤ 1
2εL2 ∥Sy∥2, from the definition of

R. Using Markov’s inequality, we obtain that ∥Sy∥2 ≤ 1000∥y∥2 with probability ≥ 0.999.
Combining the results, we obtain the following

∥w∥2 =∥Xw∥2 ≤ 1

2εL2
·∥Sy∥2 ≤ Cε−1L−2∥y∥2.

for some C > 0.

Now note that y = f(Xw⋆)− (f(Xw⋆)−y). Using an approximate triangle inequality,
we find that ∥y∥2 ≤ 2OPT + 2∥f(Xw⋆)∥2 ≤ 2OPT + 2L2∥Xw⋆∥2. Plugging this into the
above inequality on ∥w∥2 yields the desired result.
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Appendix B. Proof of Theorem 4

The proof hinges crucially upon the following lemma, which can be viewed as a non-linear
generalization of the classical subspace embedding lemma (Lemma 8). Proving this lemma
turns out to be a major technical challenge since we are showing this result for all w1,w2 ∈
B(R) as opposed to a similar result for a fixed pair (w1,w2) which was shown in Gajjar
et al. (2023) by a straightforward application of Bernstein’s Inequality.

Lemma 9 (Non-linear subspace embedding with fixed non-linearity). Assume the input
matrix X ∈ Rn×d has orthonormal columns. For any f⋆ ∈ LipL, for any R > 0, as long
as m ≥ CL4ε−4d(log3 d+ log(1/δ)) for some fixed constant C > 0, the following holds with
probability ≥ 1− δ.∣∣∣∥∥Sf⋆(Xw1)− Sf⋆(Xw2)

∥∥2 −∥∥f⋆(Xw1)− f⋆(Xw2)
∥∥2∣∣∣ ≤ ε2R2, ∀w1,w2 ∈ B(R).

A sketch of proof of this lemma will be provided in Appendix B.1. We are now ready
to prove Theorem 4.
Proof (Proof of Theorem 4) This will follow similarly to Theorem 1 of Gajjar et al. (2023).
We want to show that (f⋆, ŵfixed) is ε-accurate. Since

f⋆(Xŵfixed)− y =
(
f⋆(Xŵfixed)− f⋆(Xw⋆)

)
+
(
f⋆(Xw⋆)− y

)
,

from triangle inequality, we get the following

L(f⋆, ŵfixed) =
∥∥f⋆(Xŵfixed)− y

∥∥2 ≤ 2
∥∥f⋆(Xŵfixed)− f⋆(Xw⋆)

∥∥2 + 2OPT.

Next, applying Lemma 9 with R = Cε−1/2L−1
√
OPT+ L2∥Xw⋆∥2 as defined in Lemma 7,

we obtain the following upper bound with probability ≥ 1− δ:

L(f⋆, ŵfixed) ≤ 2
∥∥Sf⋆(Xŵfixed)− Sf⋆(Xw⋆)

∥∥2 + 2ε2R2 + 2OPT

≤ 4L̂(f⋆, ŵfixed) + 4L̂(f⋆,w⋆) + 2C2εL−2(OPT+ L2∥Xw⋆∥2) + 2OPT

≤ 8L̂(f⋆,w⋆) + 2C2ε∥Xw⋆∥2 + 4OPT, (7)

assuming ε ≤ C−2L2, where the second line again follows from triangle inequality applied
to

Sf⋆(Xw⋆)− Sf⋆(Xŵfixed) =
(
Sf⋆(Xŵfixed)− y

)
−
(
Sf⋆(Xw⋆)− y

)
,

and the third line follows from the minimality of ŵfixed.
Note further that L̂(f⋆,w⋆) ≤ C · L(f⋆,w⋆) with probability at least 0.999 by Cheby-

shev’s inequality, since EL̂(f⋆,w⋆) = L(f⋆,w⋆). The desired conclusion follows from this
and (7) immediately, if we replace ε by ε/2C2.

B.1 Proof sketch of Lemma 9

The proof relies crucially on the idea developed in Rudelson (1996). We essentially extend
a simplified version of their idea into a nonlinear setting. First, we apply a standard
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symmetrization argument to the ℓ-th moment of the desired quantity, where we introduce
i.i.d. Rademacher random variables and denote them by ξ1, ξ2, . . . , ξm, where each ξi takes
values −1 and 1 with probabilities 1/2 each.

E sup
w1,w2∈B(R)

∣∣∣∥S(f(Xw1)− f(Xw2))∥2 − ∥f(Xw1)− f(Xw2)∥2
∣∣∣ℓ

≤ 2ℓ · E sup
w1,w2∈B(R)

∣∣∣∣∣∣ 1

mℓ

m∑
i=1

ξi

(
f(⟨xji ,w1⟩)− f(⟨xji ,w2⟩)

)2
pji

∣∣∣∣∣∣
ℓ

,

We denote vji(w1,w2) := f(⟨xji ,w1⟩)−f(⟨xji ,w2⟩) and this leads us to study the following
symmetrized random process.

Z(w1,w2) :=

m∑
i=1

ξi
vji(w1,w2)

)2
pji

, (w1,w2) ∈ B(R)×B(R),

It can be seen that the above random process conditioned on the samples {j1, j2, . . . , jm}
(fixing S) is a fortiori subgaussian (Vershynin (2018)) with respect to index (w1,w2) en-
dowed with the metric ρ on B(R)×B(R) defined as follows.

ρ
(
(w1,w2), (w

′
1,w

′
2)
)
:=

 m∑
i=1

1

p2ji

(
vji(w1,w2)

2 − vji(w
′
1,w

′
2)

2
)21/2

.

Now, consider the symmetric convex body P = conv(± xj1√
pj1

,± xj2√
pj2

, . . . ± xjm√
pjm

). We

denote P◦ as its polar given by P◦ = {z :
∣∣⟨z,p⟩∣∣ ≤ 1,∀p ∈ P} and ∥ · ∥P◦ as the Minkowski

norm associated with P◦, defined for w ∈ Rd as

∥w∥◦P := inf{t > 0 : w ∈ tP◦} = sup
i∈[m]

∣∣∣〈xji/
√
pji ,w

〉∣∣∣ .
Using Lipschitz continuity of f , we can establish an upper bound of ρ in terms of ∥ · ∥P◦

ρ
(
(w1,w2), (w

′
1,w

′
2)
)
≤ 4L2R

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2 (

∥w1 −w′
1∥P◦ + ∥w2 −w′

2∥P◦
)
, (8)

Since we have established that our desired random process is subgaussian w.r.t. a metric,
we can bound the expected supremum using the well known Dudley’s inequality, which is
stated as follows.

Lemma 10 (Dudley’s inequality). If (Xt)t∈T is a subgaussian process with respect to a
metric ρ, then

sup
t∈T

|Xt| ≲ inf
t∈T

|Xt|+
∫ ∞

0

√
log(N (T, ρ, ε)) dε,

where N (T, ρ, ε) denotes the minimum number of closed balls of radius ε w.r.t. the metric
ρ that can cover the set T .
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Next, we apply Dudley’s inequality to the process Z(w1,w2) over the set B(R)×B(R).
Since Z(w,w) = 0 for any w, it follows that infw1w2∈B(R) |Z(w1,w2)| ≤ 0.

We have fixed S for obtaining the below upper bound and we are taking the expectation
with respect to the Rademacher random variables ξ1, ξ2, . . . , ξm.

Eξ sup
w1,w2∈B(R)

|Z(w1,w2)| ≲
∫ ∞

0

√
logN (B(R)×B(R), ρ, ε) dε

≲ L2R

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2 ∫ ∞

0

√
logN (B(R), ∥ · ∥P◦ , ε) dε,

The second inequality can be verified using inequality (8) along with standard properties
of covering numbers (e.g., tensorization inequality).

Since the integral
∫∞
0

√
logN (B(R), ∥ · ∥P◦ , ε) dε only involves the entropy in dual norm

∥ · ∥P◦ , we control this using duality of metric entropy. In particular, one can invoke dual
Sudakov minoration (Ledoux and Talagrand, 1991) to prove∫ ∞

0

√
logN (B(R), ∥ · ∥P◦ , ε) dε ≲ sup

i∈[m]

∥xji∥√
pji

R

√
log2 d · logm.

By Lemma 6 we may assume without loss of generality that X is orthonormal, and in
this case one may show that

√
pji = ∥xji∥/

√
d. Combining these results, we obtain

Eξ sup
w1,w2

|Z(w1,w2)| ≲ L2R2

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2√

d log2 d · logm.

Therefore, we establish an upper bound without any dependence on the nonlinearity
f . Taking expectation w.r.t. S, we obtain, by matrix Chernoff bound (Rudelson and
Vershynin, 2007),

E

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥ ≲ m+ d log d. (9)

Under the assumption m ≳ L4ε−4d log3 d, we deduce that

1

m
E sup

w1,w2∈B(R)
|Z(w1,w2)| ≲ ε2R2.

This is close to the claimed result in the lemma, except that we need a tail bound, which
can be obtained easily from the above by a concentration of measure argument (Ledoux,
2001). In fact, we may showE sup

w1,w2∈B(R)

∣∣∣∣∣∣ 1

mℓ

m∑
i=1

ξi

(
f(⟨xji ,w1⟩)− f(⟨xji ,w2⟩)

)2
pji

∣∣∣∣∣∣
ℓ


1/ℓ

≲ ε2R2 + L2R2

√
d

m

√
ℓ.

This gives the desired subgaussian tail bound by a standard argument based on Markov’s
inequality (Vershynin, 2018).
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Appendix C. Proof of Theorem 5

The proof follows exactly the same line as the proof of Theorem 4, but with Lemma 9 there
substituted with the following result which highlights the case of single index models where
the nonlinearity could be unknown.

Lemma 11 (Non-linear subspace embedding with unknown non-linearity). Assume the
input matrix X ∈ Rn×d has orthonormal columns. As long as m ≥ CL6ε−6d3/2 log(n/dδ)
for some fixed constant C > 0, the following holds with probability ≥ 1− δ.∣∣∣∥∥Sf(Xw1)− Sf(Xw2)

∥∥2 −∥∥f(Xw1)− f(Xw2)
∥∥2∣∣∣ ≤ ε2R2, ∀f ∈ LipL, ∀w1,w2 ∈ B(R).

Proof (Sketch) Similar to the proof of Lemma 9, we need to bound the supremum of the
process

Zf (w1,w2) :=

m∑
i=1

ξi

(
f(⟨xji ,w1⟩)− f(⟨xji ,w2⟩)

)2
pji

, f ∈ LipL, (w1,w2) ∈ B(R)×B(R).

The crucial step is to construct an appropriate discretization, N of LipL, to control the
process for each f ∈ N using Lemma 9, and then apply a union bound. It turns out N
should be chosen as an ε-net w.r.t. the following metric:

D∞(f1, f2) = sup
w1,w2

∑
i∈[m]

1

pji

∣∣∣(f1(⟨xji ,w1⟩)− f1(⟨xji ,w2⟩)
)2 − (

f2(⟨xji ,w1⟩)− f2(⟨xji ,w2⟩)
)2∣∣∣ .

This metric has the important property that the following upper bound is true determinis-
tically. ∣∣Zf1(w1,w2)− Zf2(w1,w2)

∣∣ ≤ D∞(w1,w2)

Therefore, if N is a ∆-net of LipL with respect to the metric D∞, one has

sup
f∈LipL

|Zf (w1,w2)| ≤ sup
f∈N

|Zf (w1,w2)|+∆. (10)

To control the size of the ∆-net, we utilize the following bound:

Lemma 12. Let Iji = [−R∥Xji∥, R∥Xji∥]. Then

D∞(f1, f2) ≲ LR

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2 m∑

i=1

1

pji
∥f1 − f2∥2L∞(Iji )

1/2

.

The proof is postponed to Appendix C.1. In light of this lemma, one may try to construct
an ∆-net with respect to D∞ by piecewise linear functions, each of which differs with its
neighbor on the interval Iji by an amount proportional to

√
pji , say η

√
pji for some η > 0 to

be chosen later. As long as pji is not too small, this is achievable, and by some inequalities
constraining the number of rows with small leverage scores, we can construct an ∆-net of
size

log |N | ≲ log(n/d)

η
, ∆ := ηL2R2

√
d

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2m+

1

n

m∑
i=1

1

pji

1/2

.
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As described before, we may apply Lemma 9 to each f ∈ N , and then take a union
bound, which leads us to

Eξ sup
f∈N

w1,w2∈B(R)

|Zf (w1,w2)| ≲ L2R2
√
d

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2(√

log2 d · logm+
√
log |N |

)
.

Plug this into (10) to obtain

Eξ sup
f∈LipL

w1,w2∈B(R)

|Zf (w1,w2)|

≲ L2R2
√
d

∥∥∥∥∥∥
m∑
i=1

1

pji
xjix

⊤
ji

∥∥∥∥∥∥
1/2

√
log2 d · logm+

√
log(n/d)

η
+ η

m+
1

n

m∑
i=1

1

pji

1/2
 .

Taking expectation w.r.t. S again and using the matrix Chernoff bound (9), we obtain

E sup
f∈LipL

w1,w2∈B(R)

|Zf (w1,w2)| ≲ L2R2
√
md

√
log2 d · logm+

√
log(n/d)

η
+ η

√
m

 .

Optimising over η > 0 leads to

E sup
f∈LipL

w1,w2∈B(R)

|Zf (w1,w2)| ≲ L2R2
√
md

(√
log2 d · logm+m1/6 log1/3(n/d)

)
.

From this, it can be seen that whenever m ≳ L6ε−6d3/2 log(n/d), we have

E sup
f∈LipL

w1,w2∈B(R)

|Zf (w1,w2)| ≤ ε2R2.

Similar to the proof of Lemma 9, this is close to what we desire, except that we need a tail
bound. The latter can be deduced from the above using concentration of measure again.

C.1 Proof of Lemma 12

First note that the term inside the summation of D∞(f1, f2) can be written as∣∣∣(f1(⟨xji ,w1⟩)− f1(⟨xji ,w2⟩
)2 − (

f2(⟨xji ,w1⟩)− f2(⟨xji ,w2⟩
)2∣∣∣

=
∣∣f1(⟨xji ,w1⟩)− f2(⟨xji ,w1⟩)− f1(⟨xji ,w2⟩) + f2(⟨xji ,w2⟩)

∣∣︸ ︷︷ ︸
=:T1

·
∣∣f1(⟨xji ,w1⟩)− f1(⟨xji ,w2⟩) + f2(⟨xji ,w1⟩)− f2(⟨xji ,w2⟩)

∣∣︸ ︷︷ ︸
=:T2

.
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The first factor T1 can be controlled in the following way. Recall that ∥wk∥ ≤ R for k = 1, 2,
we have |⟨xji ,wk⟩| ≤ R∥xji∥, thus ⟨xji ,wk⟩ ∈ Iji . Therefore∣∣f1(⟨xji ,wk⟩)− f2(⟨xji ,wk⟩)

∣∣ ≤ ∥f1 − f2∥L∞(Iji )
, k = 1, 2.

it is then clear that
T1 ≤ 2∥f1 − f2∥L∞(Iji )

.

The second factor T2 can be controlled using the Lipschitz assumption, which implies
|fk(⟨xji ,w1⟩)− fk(⟨xji ,w2⟩)| ≤ L|⟨xji ,w1 −w2⟩| for k = 1, 2, hence

T2 ≤ 2L|⟨xji ,w1 −w2⟩|.

Combining these estimates, we obtain∣∣∣(f1(⟨xji ,w1⟩)− f1(⟨xji ,w2⟩)
)2 − (

f2(⟨xji ,w1⟩)− f2(⟨xji ,w2⟩)
)2∣∣∣

≤ 2∥f1 − f2∥L∞(Iji )
· L

(
|⟨xji ,w1⟩|+ |⟨xji ,w2⟩|

)
, (11)

and thus

D∞(f1, f2) ≤ 4L sup
w1,w2∈B(R)

∑
i

1

pji

∣∣⟨xji ,w1 −w2⟩
∣∣ · ∥f1 − f2∥L∞(Iji )

≤ 4L sup
w∈B(2R)

∑
i

1

pji

∣∣⟨xji ,w⟩
∣∣ · ∥f1 − f2∥L∞(Iji )

= 8LR sup
w:∥w∥≤1

∑
i

∣∣∣∣∣∣
〈

xji√
pji

,w

〉∣∣∣∣∣∣ · 1
√
pji

∥f1 − f2∥L∞(Iji )
.

The conclusion of the lemma then follows from Cauchy-Schwarz.
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